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 In the presence of environmental noise, speaker verification systems inevitably 

see a decrease in performance. This thesis proposes the use of two parallel classifiers 

with several enhancement methods in order to improve the performance of the speaker 

verification system when noisy speech signals are used for authentication. Both 

classifiers are shown to receive statistically significant performance gains when signal-to-

noise ratio estimation, affine transforms, and score-level fusion of features are all applied. 

These enhancement methods are validated in a large range of test conditions, from 

perfectly clean speech all the way down to speech where the noise is equally as loud as 

the speaker. After each classifier has been tuned to their best configuration, they are also 

fused together in different ways. In the end, the performances of the two classifiers are 

compared to each other and to the performances of their fusions. The fusion method 

where the scores of the classifiers are added together is found to be the best method. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

The use of speech in determining or verifying a person’s identity is a promising 

domain of study with many applications, ranging from law enforcement to consumer-

level security. In ideal conditions, speech-based verification would take place in a 

location with low levels of environmental noise, and be performed with high-quality 

audio capture devices that introduce minimal distortion to the speech signals. While high 

fidelity microphones are becoming more commonplace, so too are users given more 

potential to use these devices in locations and situations where noise levels far exceed the 

ideal.  

In such scenarios, the performance of any speaker classification system will 

inevitably degrade. The addition of any type of noise causes a mismatch between the 

utterance that is being tested and the model that is stored for a speaker in the speaker 

verification system. Given a mismatch of a high enough degree, the speaker verification 

system will be unable to correctly verify the identity of the person from whom the test 

utterance originated. However, methods such as relative spectral filtering and feature 

warping have been developed as ways of compensating for the effects of additive noise at 

the stage of audio capture [1]. This thesis examines the use of two different types of 

speaker verification systems with multiple enhancement methods as a way to counter this 

problem.  
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1.2 Motivation 

In conducting this research, two unique speaker verification systems were 

developed; namely, the Gaussian Mixture Model – Universal Background Model (GMM-

UBM) system and the Gaussian Supervector – Partial Least Squares (GSV-PLS) 

classifier. These two systems were chosen for various reasons. First, the GMM-UBM 

system “has become the de facto reference method in speaker recognition” [2]. Second, 

fusion between generative (such as GMM-UBM) and discriminative (such as GSV-PLS) 

speaker verification methods has been shown to work well in past research [3]. Finally, 

Gaussian supervectors emerge naturally as a corollary to the GMM-UBM system, and 

PLS regression has been shown to be a promising method of utilizing these GSVs in a 

framework for speaker verification [2] [4].  

The performances of these two systems for classifying speakers using speech 

corrupted with additive white Gaussian noise (AWGN) at signal-to-noise ratios (SNR) 

ranging from 0 dB to 30 dB were observed and compared. Two enhancement methods 

were applied to each of the systems – SNR estimation in conjunction with affine 

transforms, and score-level feature fusion. The selection of available affine transforms for 

use in test-to-training utterance mismatch reduction was viewed as a key parameter in 

training these speaker verification systems. Multiple of these so-called “affine 

resolutions” were studied in order to determine the best resolution to use for each system. 

Three different sets of fusion scores were generated for each system and compared with 

the other feature types in order to determine the most effective feature at each SNR. Each 

speaker verification system trained using the optimal affine resolution and feature type is 

considered to be the in “best configuration” for the experiments performed in this thesis.  
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1.2 Objectives of Thesis 

The primary objectives of this thesis are: 

1. To implement both a GMM-UBM and GSV-PLS system for speaker 

verification. 

2. To enhance the performance of the speaker verification systems using SNR 

estimation, affine transforms, and score-level fusion of feature vectors. 

3. To investigate the effect of the “affine resolution” parameter in supplementing 

the robustness of the speaker verification systems. 

4. To identify the best performing feature or fusion of features in the presence of 

various SNR noise-levels. 

5. To perform a full classifier fusion of GMM-UBM and GSV-PLS in their best 

configurations. 

6. To analyze the performances of each classifier and their fusion to determine 

whether there are statistically significant differences. 

1.3 Focus and Organization 

The focus of this thesis compares two classifiers whose performances have been 

made more robust by the application of various enhancement methods. After examining 

each of the classifiers individually, the optimal configurations for each classifier were 

compared to each other as well as a fusion of the two systems. By analyzing the 

performance of these two systems – both separately and in conjunction – a 
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recommendation is made for how to obtain robust performance in the presence of 

additive noise in a speech signal. The thesis is organized as follows: 

 Chapter 1 is an introduction, outlining the need for robust speaker verification 

systems and the contributions to the practice of speaker recognition made by this thesis. 

 Chapter 2 is a literature review and overview of all of the methods and concepts 

that have been utilized in the production of this thesis. This chapter contains derivations 

of the features that were extracted from speech utterances and whose performances at a 

various SNR levels were compared to one another. Also within Chapter 2 is an 

explanation of the two types of classifier systems whose performance was compared, 

GMM-UBM and PLS-GSV. Finally, the chapter contains definitions of the enhancement 

methods that were applied to each classifier in order to supplement their capabilities. 

 Chapter 3 outlines the approach taken to determine key parameters of each of the 

classifiers that were compared. Additionally, the methodology that was undertaken in 

training and testing the two classifier systems, applying the proposed enhancement 

methods, and analyzing system performance are expounded. 

 Chapter 4 presents the results obtained from each constituent of the proposed 

methodology. Figures and tables are included to help elucidate the significance of the 

results. 

 Chapter 5 concludes the thesis with an examination of the results that were 

obtained in addition to a recommendation for future work. 
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Chapter 2 

Background 

 This chapter contains all of the necessary background concepts that are needed to 

understand the approach taken in this thesis. It begins with a complete overview of all of 

the feature vectors that are extracted in the process of training and testing the speaker 

verification system. The feature extraction process used in both classifiers is explained as 

well. 

 Next, an overview of speaker verification systems is given. This subchapter 

contains information about how the performance of a speaker verification system can be 

evaluated using different error rates. The way these error rates are calculated is explained 

and the effects of these error rates are discussed. 

 Both of the classifier types that are used in this thesis are defined and the 

procedure for developing them is explicated. For the GMM-UBM system, both Gaussian 

mixture models and the concept of universal background models is explained. Both of 

these topics appear again in the development of the GSV-PLS system, so the GMM-

UBM system is introduced first. 

 Expanding upon the Gaussian mixture model concept, the GSV-PLS subsection 

of this chapter introduces Gaussian supervectors and explains how they can be used in a 

framework for speaker verification that utilizes the discriminative capabilities of PLS 

regression. The mathematical formulation of the PLS regression framework is also 

provided. 
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 The chapter then introduces the various enhancement methods that are used in the 

proposed methodology of this thesis. A discussion about using vector quantization (VQ) 

codebooks to perform SNR estimation is included. Additionally, an explanation of how to 

train the affine transforms used to reduce training to testing mismatch at each of the 

estimated SNR levels is provided. 

 Finally, this chapter concludes with an examination of the statistical methods that 

are used to validate the results obtained through the proposed methodology. 

2.1 Features 

 Feature extraction is an important step in speech processing that allows for the 

discerning of information stored within a speech signal that can be used to uniquely 

identify an individual. By intelligently using different digital signals processing 

techniques, features containing information about the physiological characteristics of an 

individual can be filtered out of a captured speech signal and used for classification in 

speaker recognition systems. 

 Of the four features that were chosen for the proposed methodology, three of them 

are based on linear prediction – namely, linear prediction cepstral coefficients (CEP), 

postfilter cepstrum (PFL), and adaptive component weighting cepstrum (ACW).  The 

fourth feature, the mel-frequency cepstral coefficients (MFCC), is based on the 

application of a non-uniformly spaced bandpass filter bank corresponding to the mel 

frequency scale [2]. Each of the features will be discussed in-depth subsequently. 
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2.1.1 Linear prediction. The concept of linear prediction (LP) is defined by the 

notion that a signal can be approximated as a weighted combination of previous time-

domain samples [5] [6]. To calculate a speech signal, s(n), the equation used is, 

�(�) =  � �(�)�(� − �)

�

���

+ �(�) 

(2.1) 

where P is the LP order, which defines the number of previous samples being used to 

calculate the current sample, a(k) is the set of LP coefficients, and e(n) is the prediction 

error.  

In speech processing applications, the LP coefficients, a(k), need to be calculated from 

the incoming speech signal. Finding a set of LP coefficients by using the entire speech 

signal and a high LP order would be an insufficient way to accurately approximate the 

speech signal, so instead a lower LP order is used and coefficients are calculated for 

many short frames over the duration of the speech signal [6]. The autocorrelation method 

for linear predication is typically used, which is accomplished by minimizing the total 

mean-squared (L2) prediction error, E, in the equation, 

� = � ��(�)

�

��� �

= � � ��(�) −  � �(�)�(� − �)

�

���

�

��

��� �

 

(2.2) 

where the signal, s(n), is not assumed to be causal, e2(n), is the L2 prediction error, and E 

is a function of all LP coefficients, E(a(1), a(2), … a(P)).  
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Simplifying Equation 2.2 results in, 

� = � �(�)

�

��� �

− 2 � � �(�)�(� − �)�(�)

�

���

�

��� �

+ � �(�) � �(�) � �(� − �)�(� − �)

�

��� �

�

���

�

���

 

(2.3) 

The term of two summations in Equation 2.3 can be rewritten in vector form as follows: 

2 � � �(�)�(� − �)�(�)

�

���

�

��� �

= 2[�(1),�(2),… �(�)]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡� �(� − 1)�(�)

�

� �(� − 2)�(�)

�

⋮

� �(� − �)�(�)

� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 2��� 

(2.4) 

The term of three summations in Equation 2.3 can also be rewritten, this time as two 

vectors and a matrix. This operation results in the following simplification, 

� �(�) � �(�) � �(� − �)�(� − �)

�

��� �

�

���

�

���

= [�(1),… �(�)][ɸ ]�
�(1)

⋮
�(�)

�= ��ɸ  � 

(2.5) 

where ɸ is defined as the P × P Toeplitz autocorrelation matrix. It is assumed that every 

speech sample outside the frame for which the LP coefficients are being calculated is 

equal to zero [6]. With this assumption, each element of the matrix, ɸ, can be calculated 

as, 
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ɸ (�,�) =  � �(� − �)�(� − �)

� � �� |�� �|

���

 

(2.6) 

where 1 ≤ k, j ≤ P, and N is the size of the sample window [5]. By manipulating Equation 

2.6 via substitution as follows, it can be shown that this is equivalent to the 

autocorrelation of the signal, s(n) [6], 

��� � = � − � 

ɸ (�,�) =  � �(�)�(� + (� − �))

� � �� |�� �|

���

 

��� � = � − � 

ɸ (�,�) = �(�) = � �(�)�(� + �) = � �(�)�(� − �) = �(−�)

� � �� �

���

� � �� �

���

 

(2.7) 

With Equation 2.7, the vector, d, from Equation 2.4 and the matrix, ɸ, from Equation 2.5 

can be simplified to, 

� =  �

�(1)
�(2)

⋮
�(�)

� 

ɸ =

⎣
⎢
⎢
⎢
⎡

�(0)       �(1)         �(2)

�(1)       �(0)         �(1)

�(2)       �(1)         �(0)

…
…
…

�(� − 1)
�(� − 2)
�(� − 3)

⋮                ⋮               ⋮ ⋱ ⋮
�(� − 1) �(� − 2) �(� − 3) ⋯ �(0) ⎦

⎥
⎥
⎥
⎤

 

(2.8) 
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Thus, what remains is the equation for the total L2 prediction error, written in terms of 

s(n), a, d, and ɸ.  

� =  � ��(�)

� � �

���

− 2��� + ��ɸ  � 

(2.9) 

To minimize this equation, the gradient with respect to a must be taken and set equal to 

zero. Not that the gradient of the first term in Equation 2.9 is equal to zero and need not 

be included here. 

��

��
= −2� + 2ɸ � = 0 

ɸ � = � 

(2.10) 

All that remains is a system of equations to solve for the LP coefficients. These LP 

coefficients correspond to the coefficients of an IIR filter whose all-pole transfer function 

is given by [6], 

�(�) =  
1

�(�)
= �

1

1 − ���� �

�

���

 

(2.11) 

 The poles of this transfer function are expressed as, 

�� = ������,       � = 1,2,… ,� 

(2.12) 
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Using the Levinson-Durbin algorithm to solve for the LP coefficients in Equation 2.10 is 

a computationally efficient way to determine the weights of each speech frame and 

guarantees that all of the poles of H(z) are found within the unit circle [6]. 

2.1.2 Linear prediction cepstral coefficients (CEP).  The cepstrum of a signal is 

defined as the inverse Z-transform of the natural logarithm of the Z-transform of the 

speech signal [6], 

��(�) = �� �{ln (�(�))} 

(2.13) 

where cs(n) are the cepstral coefficients at each quefrency, and S(z) is the Z-transform of 

the speech signal, s(n). For the case of an LP filter, 1/A(z), the causal LP cepstrum can be 

given as, 

���(�) = �

0,                      � ≤ 0

1

�
� ��

�

�

���

, � > 0
 

(2.14) 

where zk are the poles of the LP filter and P is the order of the LP filter [6]. The LP 

cepstral coefficients can be found in a computationally efficient way using the following 

recursive relationship between the LP cepstral coefficients and the LP predictor 

coefficients: 
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���(�) =

⎩
⎪
⎨

⎪
⎧�(�) + � �1 −

�

�
� �(�)���(� − �), 1 ≤ � ≤ �

�� �

���

� �1 −
�

�
�

�� �

���

�(�)���(� − �),               � > �

 

(2.15) 

Note that in this equation, a(k) = 0 for k > p. As the duration of the LP cepstrum is 

infinite, usually the first P coefficients are taken as the feature vector. For a sufficiently 

large LP order, the L2 difference between a cepstrum of order P versus one of order P+1 

is insignificant given the decay caused by increasing n [6].  

2.1.3 Postfilter cepstrum (PFL/PST).  The postfilter cepstrum is based on a 

pole-zero transfer function that was designed to emphasize the peaks of the formants of a 

speech signal. The rationale behind this is that noise is less perceptually damaging to a 

speech signal in the formant regions; hence, by emphasizing these regions, the LP 

cepstrum extracted from the postfiltered speech should be less susceptible to error in the 

presence of noise [7]. The transfer function of this filter is given as, 

���(�) =
�(

�
�

)

�(
�
�)

,   0 < � < � ≤ 1 

(2.16) 

where 1/A(z) is the all-pole LP transfer function, and both β and α are scaling factors for 

the poles of the LP filter. The cepstrum of the filter defined by the transfer function, Hpf, 

is the postfilter cepstrum (PFL/PST) that is implemented as one of the feature vectors 
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under test in the two speaker verification systems of this thesis. To compute the postfilter 

cepstrum, one can simply scale the LP cepstral coefficients using the following equation: 

����(�) = ���(�)[�� − ��] 

(2.17) 

In the speaker verification systems implemented in this thesis, the values used to scale the 

LP cepstrum were α = 1 and β = 0.9. 

2.1.4 Adaptive component weighted cepstrum (ACW).  The adaptive 

component weighted cepstrum (ACW) is another feature, like PFL, that was designed to 

improve the robustness of speaker recognition systems in the presence of noise. It does 

this by normalizing the residues of the all-pole LP filter by setting them equal to 1 in 

order to remove variations caused by channel effects [6]. The pole-zero transfer function 

of the ACW system is given as, 

����(�) =  
�(�)

�(�)
= �

1

1 − ���� �

�

���

 

(2.18) 

where N(z) is given by: 

�(�) = � � (1 − ���� �)

�

�����

�

���

 

(2.19) 

Because N(z) can be shown to be minimum phase, the ACW feature is guaranteed to be 

causal and can be defined as [6], 
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����(�) = �
log(�) ,                          � = 0

���(�) − ���(�), � > 0
 

(2.20) 

where cnn(n) is a component that changes with each frame to better approximate the 

channel effects seen in that section of the speech signal. Based on Equations 2.18 and 

2.19, N(z) can be rewritten as, 

�(�) = � �1 − � ���� �

�� �

���

� 

(2.21) 

where bk are the coefficients of the polynomial in the numerator of Equation 2.18. These 

coefficients are used to define the subtractive component, cnn(n), in the same way that the 

LP coefficients define the LP cepstrum in Equation 2.15. Normally, finding N(z) would 

be a computationally demanding process involving polynomial root finding; however, a 

simpler, faster algorithm has been proposed that allows for the formulation of N(z) – and 

thus, the ACW feature – by computing bk directly from ak [8]. 
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2.1.5 Mel frequency cepstral coefficients (MFCC).  Mel frequency cepstral 

coefficients (MFCC), also sometimes called mel-warped cepstral coefficients, are not 

based on linear prediction as the other features have been. MFCCs are calculated via the 

application of a non-uniformly spaced bandpass filter bank. The filter bank is based on 

the so-called mel scale of frequencies, which are based on subjective pitch comparisons 

done by human test subjects. As such, the scale was an attempt to create a set of 

frequencies that more closely approximates the frequency response of the human auditory 

system [2] [6].  

The MFCC is calculated by defining the outputs of a P-dimensional filter bank as 

Yp and using the following equation, 

�����(�) = ��log ������ �
��

�
(� − 0.5)�

�

���

 

(2.22) 

where cMFCC(n) are the MFCC coefficients. Here, the outputs of the filter bank are 

logarithmically compressed and followed by a discrete cosine transform (DCT) in order 

to calculate the MFCC coefficients [2]. 

2.1.6 Temporal derivatives of features.  In order to utilize not just the spectral 

properties of a speech frame, but also the temporal and transitional information contained 

across multiple frames, temporal derivatives of the feature vectors are taken [6] [9]. The 

first-order temporal derivative is approximated by, 
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�� =
∑ �(����)�

��� �

∑ ���
��� �

 

(2.23) 

where ck and dk are the feature vector and delta feature at frame k, respectively, and m is 

the number of frames the delta feature looks forward and backward. Using a value of m = 

2 results in a delta feature calculated across a span of 5 frames. Replacing the feature 

vector with the delta feature in Equation 2.23 results in a second-order temporal 

derivative. By concatenating the feature vector, the delta feature, and the double delta 

feature, the speaker verification system is able to utilize 36-dimensional feature vectors 

[9]. 

2.2 Speaker Verification Overview 

 Speaker verification is the practice of determining whether a test speaker truly 

holds the identity that they have claimed via the analysis of their speech. Whereas a 

database typically contains a high number of models pertaining to each of the target 

speakers on which the system has been trained, the test utterance offered by the test 

speaker needs only to be compared to that target model of the claimed identity. 

Therefore, even for a speaker verification system that has been trained on potentially 

millions of users, the process of validating the test speaker’s claim is only a 1:1 problem. 
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Figure 1. Speaker verification system block diagram. 

 

 

 In order to accomplish such a feat, the system needs to store a model that 

theoretically represents everyone in the world other than the target speaker. Of course, 

gathering speech samples from every human on Earth would be truly daunting task; 

however, from a statistical standpoint, a so-called universal background model is a close 

enough approximation for speaker verification purposes [1]. A more in-depth discussion 

about how the universal background model is calculated and used can be found in the 

following subchapter on Gaussian mixture models.  
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2.2.1 Performance measures.   The proceeding subsections discuss the various 

performance measures that are used to evaluate the practical ability of a speaker 

verification system. Note that the subset listed within this thesis is not exhaustive; many 

more performance measures exist for judging the capability of a speaker recognition 

system, however the metrics included here are the only ones used to evaluate the 

implementation proposed by the methodology in this thesis. 

 Each of the listed performance measures are predicated upon the use of generating 

a large set of scores via a training set and a testing set of speech utterances. The generated 

scores can be classed within two subdivisions: intraclass and interclass scores. Intraclass 

scores, sometimes called genuine or true scores, are generated by scoring all test 

speakers’ utterances against their true identity. Interclass scores, sometimes called 

impostor scores, are generated by scoring all test speakers’ utterances against every 

identity within the system other than their true identity. 

 Once both of these sets of scores are calculated, one can determine the scoring 

threshold at which the most desirable system performance is obtained. The scoring 

threshold is the score that needs to be generated for a given test in order for the system to 

accept that the test speaker holds the claimed identity. This threshold is the key parameter 

for determining the performance measures outlined ahead. In order to meet system 

specifications, many thresholds need to be tested. Each threshold tested will generate a 

unique false accept rate (FAR) and false reject rate (FRR) and a threshold must be picked 

that balances the tradeoff between FAR and FRR in a manner that suits the application of 

the speaker verification system [1]. 
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2.2.1.1 False accept rate (FAR). A false acceptance is defined as the scenario 

where an impostor speaker was accepted as the claimed identity by the system. The total 

number of times that such a scenario arises divided by the total number of acceptances in 

the testing phase [1]. As the threshold of the speaker verification system is lowered, 

necessarily the FAR will rise. This is because lowering the threshold means that impostor 

scores (which are, ideally, lower than genuine scores) will begin to be found above the 

now-too-low threshold. 

 In certain applications, it is desirable that the performance of the system is tuned 

to allow for a higher false accept rate than false reject rate. Consider a consumer 

electronics device that uses biometric verification to grant access to the device. If the 

FAR is tuned to be extremely low, balance between FAR and FRR dictates that the FRR 

will inevitably be much higher. In such a case, the user who owns the device would find 

themselves incapable of unlocking their device more often than they would deem 

acceptable. It would then behoove the engineers designing this system to pick a lower 

threshold, within reason, so that their customers do not decide to purchase a competitor’s 

device. 
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2.2.1.2 False reject rate (FRR).  A false rejection is defined as the situation 

where a true speaker fails to be validated against their own target model. The false reject 

rate is the total number of trials in which such a scenario occurs divided by the total 

number of rejections during the testing phase of the system [1]. Contrary to the FAR, a 

system with too high of an FRR means that the chosen scoring threshold is too high and 

even genuine scores are being rejected from the system. 

Just as a higher FAR is desirable in some cases, so too is a higher FRR desirable 

in certain scenarios. Consider a biometric verification system being used to validate 

access to an area with highly sensitive equipment. In this case, it would be necessary to 

design for a higher FRR to ensure that absolutely no one without authority to enter the 

area is granted access by the system. Perhaps the authorized individuals would have to try 

multiple times to be granted access to the area, but that is less important than keeping 

undesirable individuals out of the area. 

2.2.1.3 Equal error rate (EER). The equal error rate is the error rate at the 

operating point of the system at which the FAR and FRR are equal. Typically, system 

designers would not choose a threshold that gives an equal FAR and FRR, as discussed in 

previous sections; however, the EER remains a popular performance metric for 

researchers to compare the performance of their system to those of the past [1]. In the 

performance analysis of the systems implemented in the approach of this thesis, the EER 

is the performance metric used to determine the systems’ capabilities. A lower EER 

indicates a better performance and is desired. 
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2.3 Gaussian Mixture Model – Universal Background Model (GMM-UBM) 

 The GMM-UBM system is one of the most common classifiers used for speaker 

verification. Though Gaussian mixture models alone can form a stochastic representation 

of a speech utterance, in order for speaker verification to be performed it must be couple 

with a universal background model [10]. The formulation of each of these two 

components is discussed hence. 

2.3.1 Gaussian mixture model (GMM). In speaker recognition, a Gaussian 

mixture model is a method for representing a training set of feature vectors as a weighted 

sum of probability density functions characterized by the mean vectors, covariance 

weights, and mixture weights of the feature vectors [1] [2] [9] [10]. For a GMM using a 

weighted sum of M Gaussian mixtures, the probability density function is given as, 

�(�|�) = � ���(��; ��,��)

�

���

 

(2.24) 

where wi are the mixture weights, which satisfy the condition ∑ �� = 1�
��� . For each 

mixture, �(��; ��,��) are the mixture densities, which, for D-variate Gaussian functions, 

are defined by, 

�(��; ��,��) =
1

(2�)�/�|��|�/�
��

�
�

(��� ��)���
��(��� ��) 

(2.25) 
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where D is the dimension of the extracted feature vectors, µi are D-dimensional vectors, 

and Σi are D×D covariance matrices; however, typically only the diagonals of the 

covariance matrices are calculated in order to be more computationally efficient [9] [10]. 

The GMM for a given speaker is characterized by the three parameters – wi, µi, and Σi. 

These parameters are iteratively refined for each utterance using the expectation 

maximization (EM) algorithm, which can assure monotonic convergence to optimal 

parameters in roughly five iterations [9] [11]. 

2.3.2 Universal background model (UBM).  The second component of a GMM-

UBM system, the universal background model, provides a contrast to the target speaker 

models against which each test utterance can be scored. Ideally, the universal background 

model should be an alternative to the claimed speaker model which represents the entire 

space not occupied by the target model [12]. Thus, it is crucial to use a different set of 

speakers in calculating the UBM than were used in calculating the target speaker GMMs.  

 The UBM is calculated in the same way as target speaker GMMs except that, 

instead of calculating one GMM per speaker, one GMM is created to represent all of the 

pooled speakers represented in the UBM [10]. Again, the parameters of the UBM are 

refined using the EM algorithm, just as with the target speaker GMMs.  

Once the UBM is calculated, the speaker models are adapted from this large 

speaker-independent GMM using a process called maximum a priori (MAP) adaptation 

[1]. This can be done by using all of the parameters – weights, means, and covariance – 

to adapt the GMMs, or it can be done using only the weights. Using only the means has 

been shown to result in minimal degradation to system performance, so it is preferred due 
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to the less computationally complex nature of this type of adaptation [10]. For a GMM-

UBM system, the number of Gaussian mixtures used in computing the speaker GMMs 

must equal the number used to compute the UBM. 

2.3.3 Score computation. Scoring a test utterance in a GMM-UBM system is 

done by comparing the likelihood of the utterance belonging to the claimed speaker to the 

likelihood of it belonging to the background model. 

 

Figure 2. GMM-UBM scoring paradigm [10]. 

 

The score of a test utterance is calculated is a log-likelihood ratio as follows, 

 

�(�) = log ������������ − log �(�|����)  

(2.26) 

where S(x) is the score for utterance x and λtarget and λubm are the target speaker’s GMM 

and the UBM, respectively [10] [11]. By scoring many test utterances belonging to 

different target speakers in this way, the GMM-UBM system can be tuned for specific 

performance based on the performance metrics discussed in Section 2.2.1. 



www.manaraa.com

 

24 
 

2.4 Gaussian Supervector – Partial Least Squares (GSV-PLS) 

 The second classifier implemented in the methodology of this thesis is the 

Gaussian Supervector – Partial Least Squares (GSV-PLS) system, so named for its 

application of Gaussian supervectors in a PLS regression framework devised for speaker 

verification. As explained in [2], Gaussian supervectors are essentially a byproduct of a 

GMM-UBM system, so it makes sense to utilize them as inputs to a classifier that is 

entirely unique from GMM-UBM. The calculation of Gaussian supervectors and an 

explanation of the PLS regression framework used is provided in the following 

subchapters. 

2.4.1 Gaussian supervectors. By following the process outlined in Sections 2.3.1 

and 2.3.2, the speaker model GMMs for the GMM-UBM system are calculated, resulting 

in a set of weights, means, and covariance matrices for each speaker. The Gaussian 

supervector is a simple concept that extrapolates the use of the adapted mean vectors of a 

speech utterance by concatenating each one, resulting in a single supervector for that 

speech utterance. 

 

Figure 3. Gaussian supervector formulation [13]. 
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For an adapted GMM using M Gaussian mixtures and a 36-dimensional feature 

consisting of a feature concatenated with delta and double-delta features, the resulting 

supervector would be a 36M × 1 column vector. For the implementation in this thesis, 

256 Gaussian mixtures were used, meaning the GSVs were 9216 × 1 in dimension.  

In order to use GSVs in a discriminative speaker verification system, the mean 

supervectors must be scaled on a mixture-by-mixture based by the covariances and 

weights corresponding to each mixture [13]. This is accomplished using the following 

equation, 

������� = �������
� �/�

���

�

���

 

(2.27) 

where it is assumed that only diagonal covariances are used.  

2.4.2 Partial least squares regression.  The key concept in partial least squares 

(PLS) regression is that observed data can be explained in terms of some latent factors 

driving the data [14]. This idea seems to mesh well with speech processing where 

observed data can be complicated and random, but is a result of the combination of 

different physiological characteristics in the human body.  

 Assuming that there are N speakers in the training set, whose utterances are 

represented by d-dimensional Gaussian supervectors, one can denote the concatenation of 

each of the GSVs as an N × d matrix, X. In this schema, the GSVs are concatenated such 

that one GSV inhabits each row. Note that for systems where more than one training 

utterance per speaker exists, N should be multiplied by the number of training utterances 
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per speaker. A vector of labels, Y, can also be created that is N × 1 in dimension. The 

vector Y shall consist of 1’s for entries corresponding to target speakers and -1’s for 

entries corresponding to impostor speakers [4]. PLS attempts to approximate the 

relationship between the supervectors and the labels by projecting the vectors into latent 

spaces via the following decomposition, 

� = ��� + �  

� = ��� + � 

(2.28) 

where T and U are matrices containing the vectors of latent factors that govern X and Y, 

respectively. Q and P are loading vectors, and E and F are residual matrices [4]. The 

equations in 2.28 are solved using the nonlinear iterative partial least squares (NIPALS) 

algorithm, which attempts to maximize the covariance between the latent vectors T and U 

[4] [14]. 

max[���(��,��)]� = max|��|��[���(���,�)]� 

(2.29) 

The NIPALS algorithm results in a set of weights, W = {w1, w2, …, wp}, that can be used 

in a framework for PLS regression that can be utilized for speaker verification. This is 

done by substituting the weights into Equation 2.28, which results in: 

�� = ��� � + �  

(2.30) 
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Note that the residuals need not be considered in subsequent steps. Equation 2.30 can 

now be rewritten in terms of T by multiplying by the inverse of PTW: 

� = ��(���)� � 

(2.31) 

Rewriting U in terms of T and substituting into Equation 2.28 results in, 

� = ���� + ��� + � = ��(���)� ���� + �� 

(2.32) 

where � = �� + �, such that D is a diagonal matrix and H is the residue [4]. Equation 

2.32 can be used to define the PLS regression, 

� = �� + � 

(2.33) 

where, 

� = �(���)� ����  

(2.34) 

and B, also referred to as the Beta matrix, is a matrix containing the PLS regression 

coefficients that allow for the computation of speaker verifications scores [4]. In the PLS 

regression framework for speaker verification, each speaker will have a unique Beta 

matrix. In essence, the Beta matrix can be thought of as the speaker model itself. 

Scores are calculated in a one-shot process as follows, 
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�(�) = ������������ 

(2.35) 

where Xtest is a concatenation of all of the supervectors representing utterances that are to 

be scored against the target speaker Beta matrix [3] [4]. In such a paradigm, S(x) will be a 

vector containing one score pertaining to each supervector tested against the target Beta 

matrix. These scores can then be analyzed the same way GMM-UBM scores are in order 

to determine the system performance via equal error rate. 

2.5 Enhancement Methods 

 The enhancement methods discussed in the following subchapter have been 

applied to both classifiers implemented in the methodology of this thesis. The 

determination of the optimal application of these methods constitutes the principal 

contribution of this research. To begin, the subchapter explains the paradigm used for 

signal-to-noise ratio (SNR) estimation, beginning with a discussion of vector 

quantization. The SNR estimation system used in conjunction with the application of 

affine transforms for feature augmentation, taken as a whole is the first enhancement 

method used. The second enhancement method is score-level feature fusion, which can 

be subdivided into three different methods. 
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2.5.1 Signal-to-Noise Ratio (SNR) Estimation. Additive noise can affect speech 

signals in varying degrees of severity. The speech signal could be lightly corrupted, so 

minimally that the resultant is perceptually indistinguishable from clean speech; or it 

could be so heavily degraded that one cannot recognize it as speech at all. The more 

prominent the noise in a corrupted signal is compared to the clean signal, the lower the 

signal-to-noise ratio (SNR) of the corrupted signal is. Methods have been developed that 

allow for blind estimation of the SNR of a speech signal, which is a vital process in the 

steps for applying the proper affine transform in order to compensate for the quality loss 

of the signal [15].  

2.5.1.1 Vector Quantization (VQ). The SNR estimation technique used in this 

thesis is based on a classifier known as a vector quantizer (VQ). Vector quantization is a 

classification paradigm that assigns labels, called codewords, to feature vectors classified 

as falling within the near-region of a centroid, also called a codevector [1]. The near-

region of a codevector is defined by the local region in which points in the vector space 

have a smaller distance to that codevector than any other in the classifier. Although one 

could use all of the available training vectors to develop the VQ system, typically the 

number of codevectors are compacted via a clustering algorithm to produce a VQ 

codebook [1] [2]. 

 For a set of N test feature vectors, T = {f1, f2, …, fN}, the score, D, known as the 

average distortion, against a codebook of size L, C = {c1, c2, …, cL}, is defined as, 
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�(�,�) =
1

�
� ���������(��,��)

�

���

 

(2.36) 

where d(xi,ck) is a distance measure between the ith test feature vector and the kth 

codevector in codebook C [2]. In other words, for every codevector, the distance between 

all of the test feature vectors and that codevector is summed, resulting in L summed 

distance scores. From there, the average distortion is taken as the minimum summed 

distance. A lower average distortion represents a higher probability that the test feature 

vectors belong to the same speaker on whom the codebook was trained [2]. 

2.5.1.1.1 Linde-Buzo-Gray (LBG) algorithm.  In the 1980s, an algorithm was 

devised for computing accurate codebooks based on the K-means clustering algorithm [2] 

[16]. The algorithm has come to be known as the Linde-Buzo-Gray algorithm, so named 

for the authors of the paper in which the algorithm was first proposed. The algorithm is a 

four stage iterative process, which begins by defining an initial codebook of size 1 as 

�� =
1

�
� ��

�

���

 

(2.37) 

where fi are feature vectors in the training set of N vectors, F. Once this codebook is 

calculated, find the average distortion between the training set and the codebook. 

� =
1

�
� �(��,��)

�

���

 

(2.38) 
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The average distortion at each stage must be stored, and shall be denoted as Dprev. 

Next, set Dprev equal to D and create a binary split from the codebook by perturbing the 

codevector by a small factor ε. This results in a codebook with two codevectors. 

�� = �� + ε;       �� = �� − ε 

(2.39) 

Now, the Voronoi region of each codevector must be calculated. The Voronoi 

region, Vj, of a codevector, cj, is defined as the set of training feature vectors that are a 

shorter distance away from that codevector than any other codevector in the codebook 

[17]. 

�� = ��� ∈ � | ����,��� ≤ �(��,��),�≠ �� 

(2.40) 

In the case where the distance from a training feature vector is equivalent between 

two codevectors, the training feature vector is assigned to a Voronoi region arbitrarily. 

With the two Voronoi regions calculated, the new average distortion must be calculated 

and compared to the average distortion stored as Dprev. 

� =
1

�(��)
� �(�� ∈ ��,��)

� (��)

���

+
1

�(��)
� �(�� ∈ ��,��)

� (��)

���

 

(2.41) 

Note that the training feature vectors are only scored in the distance measure 

against the codevector to whose Voronoi region they belong. If the difference between 

the new average distortion and the previous average distortion falls below a threshold, the 
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process can be stopped. Otherwise, the algorithm continues to iterate the process, setting 

Dprev equal to D and performing another binary split. 

2.5.2 Affine transform. The affine transform is a technique borrowed from the 

digital image processing domain that allows for the rotation, scaling, and translation of 

feature vectors extracted from speech signals [6] [18]. Such transformational capability 

can compensate for the distortion caused by many types of noise degradation to speech, 

including additive noise at the speaker level. This helps to remediate the problem of 

training to testing mismatch when the test utterance is captured in a noisy environment, 

resulting in an overall increase in system performance.  

  For a set of feature vectors for the training condition, � = ���,��,… ,���, and a 

set of feature vectors for the testing condition, � = ���,��,… ,���, the affine transform 

mapping that relates x and y is defined as, 

� = �� + � 

(2.42) 

which can be expanded to: 
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� 

(2.43) 

The matrix A and the vector b and parameters learned only using the feature vectors for 

the training condition [6] [18] [19]. For a feature vector with N individual frames, the 

training condition feature vector is denoted as x(i) and the testing condition feature vector 
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is denoted as y(i) where i = 1 to N. With these sets of feature vectors, a squared error 

function is composed [18]: 

�(�) =  ���(�)(�) − ��
� �(�) − �(�)�

�
�

���

 

(2.44) 

where � = {1,2,… ,�}, and ��
�  is the mth row of A. The error function is minimized by 

taking the gradient with respect to am and then b(m), which results in the following 

system of equations: 
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(2.45) 

The error function is minimized for all values of m, resulting in m systems of equations 

(p+1) in dimension [6] [18]. 

2.5.3 Fusion. The second enhancement method applied to the speaker verification 

systems in the methodology of this thesis is feature fusion. Given the four features that 

were implemented in this research, there are ten different possible combinations of 

features that could be combined using fusion; however, only the case where all four 

features are utilized was tested in this approach. 
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2.5.3.1 Score level fusion. In speaker verification, fusion is performed at the score 

level, meaning that each feature is evaluated independently and the scores corresponding 

to each trial are fused at the end stage [20]. Because the resultant scores from each 

feature will be highly irregular comparatively, the scores must first be normalized 

between 0 and 1 in order to be utilized for classification. Normalization is performed on a 

feature by feature basis using all of the interclass and intraclass scores pooled together. 

The following equation is used for mapping the scores for a feature between 0 and 1, 

����� =
� − min (�)

max(�) − min (�)
 

(2.46) 

where Snorm is the set of normalized scores pertaining to a specific feature and S is that 

feature’s scores before normalization. The three fusion methods utilized in the approach 

proposed by this thesis are listed as follows. 

2.5.3.1.1 Sum fusion. Sum fusion is performed by adding the scores generated by 

each feature together. For a specific trial, the sum fusion score is computed as, 

 

���� = � �����
(�)

�

���

 

(2.47) 

where Ssum is the sum fusion score and �����
(�)

 is the normalized score for the ith feature 

[20]. For each of the discussed fusion methods under Section 2.5.3.1, N = 4 since there 
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are four features whose scores are being fused. Additionally, Equation 2.47 generates a 

score for a single trial, so the process must be repeated for all genuine and impostor trials. 

2.5.3.1.2 Product fusion. Product fusion is performed by multiplying the scores 

generated by each feature in a specific trial together as follows, 

����� = � �����
(�)

�

���

 

(2.48) 

where Sprod is the product fusion score for the trial [20]. 

2.5.3.1.3 Maximum fusion. Finally, maximum score fusion is performed by taking 

the maximum of the scores generated by each feature in a single trial as follows, 

���� = max ������
(�)

,�����
(�)

,… ,�����
(� )

� 

(2.49) 

where Smax is the maximum fusion score for the trial [20]. 
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2.5.3.2 Classifier fusion. Classifier fusion for speaker verification also takes place 

on a score level using the three methods described in the previous sections. When a test 

utterance is input to the speaker verification system, it will be scored by each classifier 

independently. For a given trial, any of the above fusion methods can be applied using 

the same normalization technique and using N = 2, if two classifiers are being fused as in 

this thesis. In this thesis, the GMM-UBM system is a generative model for speaker 

recognition and the GSV-PLS system is discriminative. Such fusion between generative 

and discriminative systems has been shown to work well in the past. It is thought that this 

method works because generative and discriminative classifiers hold complementary 

information about the speakers [3].  

2.6 Statistical Analysis 

 In order to determine the statistical significance of results obtained during various 

stages of the proposed methodology, multiple analyses of variance are performed on the 

datasets. When comparing two different factors (e.g. feature type and enhancement 

method), a two-way analysis of variance (ANOVA2) is performed. This method focuses 

on determining whether there is a statistically significant difference in the means of each 

of the factors individually and whether there is an interaction between the two [21]. 

 In addition to the ANOVA2, a one-way analysis of variance (ANOVA) is used in 

the final stages of this treatment in order to compare the means of the equal error rates of 

the two classifiers and their fusion. Following each ANOVA, Tukey’s method for 

multiple comparison of means is applied, using a confidence interval of 95% in order to 

make determinations of whether the differences in means are statistically significant [21].  
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Chapter 3 

Methodology 

In Chapter 3, a complete explanation of each stage of the proposed methodology 

is provided. First, a description of the speech database and the characteristics of the 

speech data contained therein is stated. Following that, an overview of the feature 

extraction process used to generate each of the features listed in Section 2.1 is included. 

The methods used for choosing the parameter called “affine resolution” and the optimal 

feature or fusion strategy are then detailed. Next, the entire process for training both the 

GMM-UBM and GSV-PLS classifiers is described. The chapter concludes with a 

discussion of the application of the proposed enhancement methods, followed by the 

statistical analysis used to validate the results. 

3.1 Description of the TIMIT Database 

 A subset of the TIMIT database developed as a collaborative effort between 

Texas Instruments and MIT was used to develop and test the speaker verification systems 

in this approach. The TIMIT database contains speech samples from a total of 630 

different speakers; this approach utilized 90 of those speakers for training and testing and 

168 speakers taken from the ‘test’ portion of the original TIMIT CD for development of 

the background models. Each speaker in the database has 10 speech utterances recorded 

at a sample rate of 16 kHz; however, they have all been down-sampled to 8 kHz before 

utilization in the speaker verification system development. For the 90 speakers used in 

the training and testing phase of development, eight sentences per speaker were selected 
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for training while the remaining two were used for testing. All ten sentences of the 168 

background speakers were used in the development of the UBM. 

3.2 Feature Extraction 

 Feature vectors are extracted on a frame-by-frame basis. Each speech utterance is 

broken up into frames 30 ms in length with an overlap of 20 ms. This corresponds to 240 

samples in length with 160 samples overlap at a sampling rate of 8 kHz. Because each 

speech utterance varies in length, the total number of frames is inconstant. A Hamming 

window is applied to emphasize the samples near the center of the frame, and a pre-

emphasis filter is applied to the frame in order to boost higher frequency formants that 

contain a lot of discriminant information. Following the pre-emphasis, 12th order linear 

prediction is performed on each frame to generate 12 LP coefficients for each frame. 

These coefficients are then used to compute the LP cepstral coefficients, which are then 

modified to calculate the ACW and PFL features. The MFCC feature is calculated by 

performing a short-time Fourier transform (STFT) on the speech, warping it to the Mel 

frequency scale, and taking the DCT on the log of the Mel spectrum to generate cepstral 

coefficients.  

Each of the four generated features (CEP, ACW, PFL, MFCC) are analyzed to 

compute the delta and double-delta features as formulated in Equation 2.23. The temporal 

derivative is taken over a span of five frames centered on the current speech frame. The 

12-dimensional feature vector and its corresponding 12-dimensional delta and double 

delta feature vectors are concatenated, resulting in a 36-dimensional feature vector. This 
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is done for each of the feature types; therefore, there are four 36-dimensional feature 

vectors per frame of speech being processed.  

Voice activity detection (VAD) based on the spectral energy of the speech signal 

is used [2]. Frames with low spectral energy are determined to contain little to no 

discriminative speech information, so they are discarded. This energy thresholding 

selection is done for each of the four features, so only frames containing useful speech 

information will be taken as part of the feature vector matrix for that utterance. 

3.3 Affine Resolution 

 Affine resolution is a parameter that determines which affine transforms are 

available for use in enhancing the feature vectors of a noisy test utterance. Affine 

transforms were trained on the SNR levels of corrupted speech. That is, the training 

condition on which the affine transforms were trained was clean speech and the testing 

condition was the same speech corrupted at a specific decibel SNR. A total of 31 Affine 

transforms were trained, spanning from 0 dB to 30 dB. Each affine transform is denoted 

as As, where the subscript, s = 0, 1, 2, …, 30, indicates what the SNR of the testing 

condition speech at which the affine transform was trained on was.  

For an Affine resolution equal to 1, the entire set of affine transforms, � =

{��,��,… ,���}, is available. Increasing the affine resolution decreases the available 

affine transforms. For an affine resolution of 5, the subset of available affine transforms 

is � = {��,��,���,… ,���}. Further increasing the affine resolution to 10 decreases the 

available subset to � = {��,���,���,���}. 
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In order to determine whether a decrease in the number available affine 

transforms causes a decrease in system performance, affine resolutions of 1, 5, and 10 

were tested in parallel for both the GMM-UBM and GSV-PLS system. Each resolution 

was tested using only blind SNR estimation. Test utterances corrupted at SNRs in 

intervals of 3 dB were used so as not to bias the experiment in favor of any of the affine 

resolutions. In other words, for example, if SNR intervals of 5 were used, it is likely that 

an affine resolution of 5 would emerge as the best option because if the SNR estimator is 

accurate this resolution would almost always choose the perfect affine transform. 

Therefore, an SNR interval of 3 dB was chosen as a compromise for testing these three 

resolutions. 

To be able to make a comparison between the affine resolutions, all three 

configurations need to be tested simultaneously. When a test utterance is processed by the 

speaker verification system, a randomly selected noise vector from the NoiseX database 

is used to corrupt the speech at the selected SNR. If the three affine resolutions were 

tested separately, a different noise vector would be applied to the test utterance making 

any comparison between the obtained results invalid. Therefore, the system was designed 

to apply the noise vector, estimate the SNR of the feature vectors, and apply affine 

transforms whose availability is governed by the three different affine resolutions to the 

same exact feature vectors. 

After scores were corresponding to each affine resolution, equal error rates were 

generated and compared using ANOVA2 to determine whether there was a statistically 

significant difference in the means of the EERs. Multiple trials for each SNR were 

performed using rotation of the utterances used for training and testing vectors. The first 
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five utterances of each speaker were used for training in every rotation because these 

utterances were used to train the affine transforms. 

 

Table 1  

Training and testing utterance rotation schema. 

Rotation Number Training Utterances Testing Utterances 

1 8, 9, 10 6, 7 

2 7, 9, 10 6, 8 

3 7, 8, 10 6, 9 

4 7, 8, 9 6, 10 

5 6, 9, 10 7, 8 

6 6, 8, 10 7, 9 

7 6, 8, 9 7, 10 

8 6, 7, 10 8, 9 

9 6, 7, 9 8, 10 

10 6, 7, 8 9, 10 

 

 

This paradigm of rotation to produce multiple trials was used in every instance 

that ANOVA was used to validate the results obtained from experiments. After ANOVA 

and Tukey’s method for multiple comparison of means was applied, the “best set” of 

affine resolutions at each SNR was decided. The best set is chosen by the taking the 

affine resolutions that lead to the lowest EER and whose mean was statistically proven to 

be different than another affine resolution. In the case that there is no statistical difference 

between the means of multiple affine resolutions’ EERs, both are taken to be part of the 

best set. After speech corrupted at all SNRs had been tested, the optimal affine resolution 

for each system was chosen as the one that appeared in the best set most often. 
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3.4 Optimal Feature Selection 

 Optimal feature selection was performed in order to make a comparison between 

the best configurations of each speaker verification system in the final phase of the thesis. 

In this case, the three fusion strategies are included in the selection for the best feature. 

Each feature and fusion type was tested in 10 trials at each SNR from 0 dB to 30 dB plus 

clean speech. Just as with the affine resolution, rotation was performed with the training 

and testing utterances, followed by ANOVA and multiple comparisons of the means of 

the EERs corresponding to each feature or fusion. A best set of features and/or fusions 

was denoted for each SNR and the optimal feature was chosen as that which appeared in 

the best set most often. When comparing the overall performance of the GMM-UBM and 

GSV-PLS systems in their optimal configuration against each other and their fusion, only 

the optimal feature was used to calculate EERs. 

3.5 GMM-UBM Classifier 

 The following subchapter details the process used for training and testing the 

GMM-UBM classifier. The classifier is comprised of four sets of 90 GMMs – one 

pertaining to each speaker on whom the system was trained – and four UBMs, which 

serves as the alternative hypothesis in the scoring phase of testing the system [10]. One 

classifier is trained per each of the four feature types used. 
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Figure 4. GMM training and testing diagram. 

 

3.5.1 Training the GMM-UBM classifier. Before the performance of the 

classifier can be tested, it must be intelligently designed by choosing the correct 

parameters and following the appropriate steps for generating the models that serve as the 

basis for the speaker verification system. The training phase is divided into two partitions 

– namely, the creation of the universal background model (UBM) and the adaptation of 

all of the Gaussian mixture models (GMMs). Each of these partitions shall be elaborated 

upon in this subchapter. 

3.5.1.1 Universal background model computation. The UBM is initialized using 

the K-means algorithm to randomly choose N centers for the pooled feature vectors of all 

of the background speakers. The covariance matrices are calculated as the sample 

covariance for the background feature vectors that are located nearest to each center. 

Mixture weights are determined by the proportion of feature vectors that are contained in 

each cluster.  
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This implementation uses 256 mixtures for each UBM, chosen to match the 

recommended configuration for the PLS system so that only one set of UBMs needed to 

be trained [4]. After the UBM is randomly initialized, 10 iterations of the EM algorithm 

are used to refine the UBM parameters [10]. This process is repeated for each of the four 

feature types used in this implementation. 

3.5.1.2 Gaussian mixture model adaptation. The GMMs against which all of the 

testing feature vectors will be tested are adapted from UBM using maximum a priori 

(MAP) estimation. Four sets of 90 GMMs serve as the speaker models in the speaker 

verification system – one for each feature type. The GMMs are adapted using only the 

means, as it was shown that this outperforms adaptation using the weights, means, and 

covariances together in [10]. 

3.5.2 Testing the GMM-UBM classifier. Testing utterances are passed through 

the feature extraction method to generate four sets of feature vectors per utterance. If the 

system is being tested under additive noise conditions, a randomly selected noise vector 

from the NoiseX database is applied to the speech utterance prior to feature extraction. If 

SNR estimation and affine transform enhancement is used, the CEP feature is used to 

estimate the SNR of the test utterance. A set of affine transforms is selected based on 

their availability governed by the affine resolution and applied to each of the feature 

vectors. Affine transforms have been trained for each feature type specifically. 

 After all speech utterances have gone through feature extraction and possibly 

have had affine transforms applied, scores for each utterance are generated in bulk. The 

score for each test utterance is the log-likelihood ratio given by Equation 2.26. The scores 
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for test utterances being tried against models for speakers to whom they do not belong are 

interclass scores. As two utterances are used for testing, there will be a total of 16,020 

interclass scores. This comes about because each utterance (2) of every speaker (90) is 

tested against every other speaker’s model (89). Multiplying these numbers together 

results in 16,020 total interclass trials. The scores for test utterances being tried against 

their own speaker models are intraclass scores. There are far fewer of these scores since 

each utterance (2) only needs to be scored against their own speaker model (90). This 

results in a total of 180 intraclass trials.  

Inter- and intraclass scores are used to calculate FARs and FRRs at thresholds 

covering the range of the scores. Histograms can be created to demonstrate the score 

distributions of the interclass and intraclass trials. A larger overlap between the two 

classes of scores indicates a higher EER will be found for the system configuration used 

in the trials. 

3.6 GSV-PLS Classifier 

 The following subchapter details the process used to train and test the GSV-PLS 

classifier. This classifier was trained after the GMM-UBM system so that it was 

unnecessary to generate further UBMs. Each speaker model consists of one PLS 

regression Beta matrix, meaning that a total of four sets of 90 Beta matrices comprise the 

entire system. Again, one classifier is trained per feature type. 
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3.6.1 Training the GSV-PLS classifier. The first steps of training the GSV-PLS 

classifier are similar to training the GMM-UBM classifier, but there is variation in the 

later steps. To begin with, the same randomly seeded UBMs with 256 mixtures and 10 

EM iterations for refinement are used. It was shown that a middling number of mixtures 

such as 256 works well for GSVs used in a PLS regression framework since higher 

orders lead to overfitting of the background data, which is detrimental to a discriminative 

classifier [4].  

 

Figure 5. GSV-PLS training and testing block diagram [4]. 
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3.6.1.1 Gaussian supervector computation. MAP estimation is again performed 

to generate GMMs, but this time one GMM per feature is created for each utterance in 

the training set. After each utterance for each speaker in the training set has had GMMs 

adapted, the mean vectors from the utterance-specific GMMs are taken and concatenated 

to create GSVs. With eight training utterances each, one utterance is mapped to one GSV; 

therefore, each speaker will have eight GSVs for a total of 720 training GSVs per feature 

type.  

3.6.1.2 Gaussian supervector normalization. As each GSV is created, the 

weights and covariances of the utterance-specific GMM are used to normalize the GSVs 

as shown in Equation 2.27 [13]. Note that it is not explicitly stated that this normalization 

needs to occur in [4] where GSV-PLS framework is described; however, it was found in 

this research that performance was severely degraded if normalization was not 

performed.  

3.6.1.3 Partial least squares regression framework. The feature-specific GSVs 

for every speech utterance are placed in a (S × U) by (N × D) matrix, where S is the 

number of speakers, U is the number of training utterances per speaker, N is the number 

of UBM mixtures, and D is the dimension of the feature vectors. (N × D) is considered 

the supervector dimension. In this approach, �×� = 256×36 = 9216. 

 The matrix is arranged such that each row contains one 1 × 9216 dimension GSV. 

This matrix is used as the X matrix in the PLS regression framework discussed in Section 

2.4.2. The Y matrix is taken as a vector of labels such that Yi = 1 if Xi contains a target 

speaker for the PLS speaker model being trained, where Yi and Xi are the ith row of the Y 
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and X matrices, respectively. If Xi contains an impostor speaker for the PLS model being 

trained, then Yi = -1. Since eight training utterances are used, each Y matrix will have 

eight entries labeled as 1, while the remaining 712 entries will be labeled as -1. In 

training each PLS speaker model, the same X matrix is used each time, while the Y matrix 

is changed to reflect the appropriate target and impostor speaker labels. The number of 

PLS components used for each regression is intelligently selected by first calculating the 

PLS regression with the maximum number of components and observing the percentage 

of variance in the Y model explained by the model. Each PLS component will 

consecutively contain less and less information about the variance, so the number of 

components used is index of the highest component found to explain at least 1% of the 

variance. The number of PLS components changes for each regression that is calculated. 

 The PLS regression is calculated for each speaker, resulting in a total of 90 Beta 

matrices that serve as the models against which test utterances can be scored.  
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3.6.2 Testing the GSV-PLS classifier. As with the GMM-UBM system, test 

utterances are used to perform feature extraction. If noisy speech is being tested, a 

randomly chosen noise vector from the NoiseX database is applied to the speech signal at 

the selected SNR prior to feature extraction. If SNR estimation and affine transform 

enhancement are enabled, the CEP feature vector is used to estimate the SNR of the 

speech signal. A set of affine transforms is selected from the available set that is 

governed by the affine resolution. The affine transforms are then applied to the four 

feature vectors 

 After each of the prior steps have been carried out, MAP estimation of the feature 

vectors is performed to create four GMMs for each test utterance – one per feature type. 

The means of these GMMs are taken and concatenated so that one GSV per feature per 

utterance is created. Each of these GSVs is multiplied against all of the Beta matrices that 

serves as the PLS speaker models to produce trial scores. Resultant scores from Beta 

matrix representing the speaker to whom the test utterance belongs are deemed intraclass 

scores. Scores from Beta matrices representing speakers to whom the test utterance did 

not originate are deemed interclass scores. Again, a total of 16,020 interclass and 180 

intraclass scores are computed per feature type. 

 The GSVs used for training the PLS models are also scored against the models to 

generate interclass scores from which descriptive statistics can be obtained. For each 

feature type, the mean and standard deviation of the scores obtained from trying the 

training GSVs against the models are calculated. The scores contain information used to 

estimate speaker-specific mean and variances for the impostor distribution [22]. These 

are used to normalize the scores using the T-norm, 
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����� =
� − ��

��
 

(3.1) 

where Snorm is the normalized score, S is the initial score, and µi and σi are the mean and 

standard deviation of speaker i, respectively [4] [22]. The normalized inter- and intraclass 

scores are both used in calculating FARs and FRRs corresponding to each threshold that 

is tested. Thresholds covering the entire range of the pooled scores are tested. The final 

threshold is chosen to be that which generates an equal error rate.  

3.7 Enhancement Methods 

 Two enhancement methods were examined for their efficacy in augmenting 

system performance for both the GMM-UBM and GSV-PLS classifiers. 

3.7.1 Affine transform. Affine transforms were trained using the first five speech 

utterances of each speaker in the training set. These utterances were corrupted at SNRs 

ranging from 0 dB to 30 dB such that the affine transforms were trained on the SNR 

levels. A VQ SNR estimator was implemented in order to determine the SNR of 

unknown test utterances using a soft decision approach [15]. The SNR estimator only 

considered the CEP feature and did not include delta features.  

Three cases were considered in determining whether the use of an affine 

transform is recommended. The first case is the one where no affine or SNR estimation is 

used to enhance the features. The second case is where blind SNR estimation was to 

determine which affine transform to apply to the features. The third case is the control 

case, where perfect SNR estimation is used by simply telling the system which affine 
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transform to apply. Each of these cases was tested using the 10 rotations of training and 

testing speech at SNRs ranging from 0 dB to 30 dB plus clean speech. 

3.7.2 Fusion Score-level fusion in each individual classifier was implemented 

separately. For both the GMM-UBM system and the GSV-PLS system, the four features 

were fused using maximum, sum, and product fusion [20]. These fusion strategies were 

tested using the 10 rotations at SNRs ranging from 0 dB to 30 dB plus clean speech. 

 After optimal feature selection was performed for both classifiers separately, the 

scores generated using only those features in each classifier were used to perform 

classifier fusion.  

3.8 Performance Analysis 

 For each experiment, statistical analysis was performed by using ANOVA to 

determine whether the difference in the performance of the factors being tested was 

statistically significant. Every experiment was performed using speech corrupted at SNRs 

ranging from 0 dB to 30 dB in addition to clean speech. The only exception is the 

analysis of the affine resolution, which did not include clean speech, and only tested 

affine resolution at SNRs in intervals of 3 dB. For each SNR, 10 trials were performed 

using the rotations described in Table 1. 

 To determine the optimal affine resolution for each classifier to use, ANOVA2 

was performed for each SNR using the EERs generated from all 10 trials. The two factors 

under investigation in this experiment were the feature types, not including fusion, and 

the affine resolution. Affine resolutions of 1, 5, and 10 were investigated to determine 

whether the means of the EERs was statistically different. Following this procedure, 
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Tukey’s method for multiple comparison of means was utilized to identify which affine 

resolutions were significantly different from the others at a 95% confidence interval [21]. 

 The second experiment was to justify the use of the affine transform. The three 

cases under investigation were using no enhancement, using blind SNR estimation, and 

using perfect SNR estimation. The goal of this experiment was to show that using SNR 

estimation in conjunction with the affine transform gives significantly better results than 

doing no enhancement. At the same time, to ensure that the blind SNR estimation 

performed reasonably well, it needed to be shown that the results are not significantly 

different than perfect SNR estimation in most cases. Again, ANOVA2 was used to prove 

statistical significance between the results. The second factor under test was the features, 

this time including all of the fusion strategies. After ANOVA, multiple comparison was 

performed on the results from both factors – the first factor to prove the usefulness of the 

enhancement method, and the second factor to choose the optimal feature for final 

comparison between the classifiers. 

 The final experiment was to compare each of the classifiers using their best 

configurations against each other and against the fusion of the two using three fusion 

strategies. The best configurations for each classifier were those that came about as a 

result of proving the statistical significance of the difference between affine resolutions 

and feature types in the previous experiments. For this experiment, only blind SNR 

estimation was used, in order to simulate a practical implementation. A one-way 

ANOVA was used to prove the significance of these results. The factor under test was the 

classifier, where the three fusion methods are considered separate classifiers. After 
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ANOVA, multiple comparison was again used to identify the best classifier at each SNR. 

A recommendation was then made based on which classifier performed best most often. 
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Chapter 4 

Results 

 This chapter provides a complete overview of all of the results obtained from the 

research presented in this thesis. The results are presented in the order that the 

experiments were performed, as results from earlier experiments were used to justify the 

choice of parameters in later experiments. To begin, the statistical analysis of the affine 

resolution parameter at each SNR is shown. These results were used to decide which 

affine resolution to use in the next experiment. A global recommendation is given for 

each classifier as it is impossible to perfectly determine the SNR of a test utterance in a 

practical scenario. The results for the experiments to justify the use of the affine 

transform enhancement follow. From these results, evidence that the affine transform is 

effective is given, and a recommendation is made for the optimal feature to use in the 

following stage. Finally, the results for overall system performance are detailed. A 

recommendation is made for the best system configuration to use as a way to counter 

system degradation in the presence of additive noise.  

For each of the analyses of variance performed, the null hypothesis is that the 

means of the EERs obtained from trials of each of the factors is the same. Using the 

multiple comparison plots, the 95% confidence intervals can be observed to determine 

whether there is sufficient evidence to reject the null hypothesis. Recall that a lower EER 

is desirable in terms of system performance. 
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4.1 Affine Resolution 

The multiple comparison plots for the analysis of affine resolutions at each SNR 

from 0 dB to 30 dB in intervals of 3 dB follow. Interpretation of each of the plots is 

provided, and at the end of the subchapter a summary of the best affine resolutions is 

tabulated. 

4.1.1 GMM-UBM affine resolution analysis. The following plots are the 

multiple comparison plots relating to the GMM-UBM trials to determine optimal affine 

resolution. 
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Figure 6. GMM-UBM affine resolution for 0 dB to 9 dB. 

 

Figure 6 shows the results obtained by following the multiple comparison method 

to identify the best affine resolutions for trials from 0 dB to 9 dB. For each of the factors, 

the horizontal line represents the 95% confidence interval (CI) and the circle in the center 

of it represents the mean of the data. At an SNR of 0 dB, there is no statistically 

significant difference in the means of the EERs at any affine resolution. Therefore, the 

best set for this trial is considered to be all of the affine resolutions. At an SNR of 3 dB, 

the affine resolutions of 1 and 5 outperform an affine resolution of 10; therefore, the best 

set is comprised of affine resolutions of 1 and 5. At an SNR of 6 dB, the affine resolution 

of 1 is not considered statistically different than 5. Additionally, an affine resolution of 5 
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is not considered statistically different than 10; however, the difference in the means of 

the EERs at affine resolutions of 1 and 10 is statistically significant. For this reason, the 

best affine resolution at this SNR is 1. Finally, at an SNR of 9 dB, a similar scenario to 6 

dB occurs, but this time an affine resolution of 10 is taken as the best. 

 

 

Figure 7. GMM-UBM affine resolutions for 12 dB to 21 dB. 

 

 Figure 7 shows the results for the GMM-UBM affine resolution analysis for 12 

dB to 21 dB. At SNRs of 12, 15, and 18 dB, the best sets are comprised of affine 

resolutions of 1 and 5. At an SNR of 21 dB, the best set is comprised of affine resolutions 

of 1, 5, and 10 since there was no statistical difference in amongst their means. 
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Figure 8. GMM-UBM affine resolution for 24 dB to 30 dB. 

 

 Figure 8 shows the results for the GMM-UBM affine resolution analysis for 24 

dB to 30 dB. At an SNR of 24 dB, the best set is comprised of affine resolutions of 1 and 

5. At SNRs of 27 dB and 30 dB, there is no statistically significant difference between 

any of the factors, so the best set includes all of them. 
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Table 2  

Best sets of affine resolutions for GMM-UBM classifier. 

Affine Resolution Appeared in Best Set Total Count 
1 0 – 6 dB, 12 – 30 dB 10 

5 0 dB, 3 dB, 12 – 30 dB 9 

10 0 dB, 9 dB, 21 dB, 27 dB, 30 dB 5 

Note: The column labeled Appeared in Best Set indicates the SNR trials for which each 

affine resolution was selected as one of the optimal resolutions. 

 

 The above table contains the number of times each affine resolution appeared in 

the best set for a given SNR. As was expected, an affine resolution of 10 only works well 

when the SNR of the corrupted speech signal falls near intervals of 10. Because an affine 

resolution of 1 appeared in the best sets most numerously, this affine resolution was 

chosen as the optimal value for the GMM-UBM system. The average EER for each affine 

resolution at each SNR taken over 10 trials is tabulated below. The results are provided 

for all four feature types. 
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Table 3  

Average EERs for GMM-UBM affine resolution trials. 

Test Condition Feature Affine Res. 1 Affine Res. 5 Affine Res. 10 
0 dB SNR ACW 43.09 43.18 43.08 

CEP 40.10 40.19 40.27 

PFL 42.23 42.43 42.41 

MFCC 34.95 34.94 35.18 

3 dB SNR ACW 37.92 37.83 38.82 

CEP 34.80 34.74 37.10 

PFL 37.41 37.22 38.56 

MFCC 28.49 28.59 29.77 

6 dB SNR ACW 31.24 31.42 31.81 

CEP 27.06 27.25 27.49 

PFL 29.05 29.29 29.81 

MFCC 21.16 21.24 21.65 

9 dB SNR ACW 23.69 23.60 23.15 

CEP 19.61 19.76 19.21 

PFL 20.68 20.21 20.15 

MFCC 15.19 14.81 14.31 

12 dB SNR ACW 16.39 16.47 17.06 

CEP 13.57 13.48 14.08 

PFL 14.58 14.60 15.05 

MFCC 10.09 10.43 10.80 

15 dB SNR ACW 10.88 10.71 12.68 

CEP 9.81 10.02 10.51 

PFL 9.88 10.11 10.86 

MFCC 7.06 7.19 8.96 

18 dB SNR ACW 7.48 7.55 7.88 

CEP 7.28 7.43 7.78 

PFL 7.28 7.38 7.79 

MFCC 5.66 5.94 6.16 

21 dB SNR ACW 5.50 5.54 5.48 

CEP 5.54 5.49 5.63 

PFL 5.75 5.77 5.88 

MFCC 4.30 4.34 4.38 

24 dB SNR ACW 4.39 4.45 4.51 

CEP 4.34 4.39 4.79 

PFL 4.58 4.52 4.85 

MFCC 3.51 3.44 3.62 

27 dB SNR ACW 3.76 3.82 3.87 

CEP 3.99 4.12 4.00 

PFL 4.07 4.20 4.04 

MFCC 3.06 3.09 3.03 

30 dB SNR ACW 3.31 3.31 3.32 

CEP 3.52 3.52 3.51 

PFL 3.57 3.56 3.55 

MFCC 2.83 2.84 2.82 
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4.1.2 GSV-PLS affine resolution analysis. The following plots are the multiple 

comparison plots relating to the GSV-PLS trials to determine optimal affine resolution. 

 

 

Figure 9. GSV-PLS affine resolution for 0 dB to 9 dB. 

 

 Figure 9 shows the multiple comparison plots for the affine resolution trials of the 

GSV-PLS classifier at SNRs of 0 dB to 9 dB. At SNRs of 0 dB and 9 dB, there is no 

statistically significant difference between the means of the factors, so the best set 

includes all affine resolutions. At an SNR of 3 dB, the best set is comprised of affine 

resolutions of 1 and 5. At an SNR of 6 dB, there is no statistical difference between the 
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means of the EERs using affine resolutions of 1 and 5. Additionally, there is no statistical 

difference between the means of the EERs using affine resolutions of 1 and 10. However, 

there is a slight statistical difference in the means of the EERs using affine resolutions of 

5 and 10. Therefore, the best set in this case only contains an affine resolution of 5. 

 

Figure 10. GSV-PLS affine resolution for 12 dB to 21 dB. 

 

 Figure 10 shows the affine resolution plots for 12 dB to 21 dB. At SNRs of 12, 

18, and 21 dB, there is no statistically significant difference between any of the factors, 

so all are included in the best set. At an SNR of 15 dB, the best set is comprised of affine 

resolutions of 1 and 5. 
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Figure 11. GSV-PLS affine resolution for 24 dB to 30 dB. 

 

 Figure 11 illustrates the affine resolution multiple comparison plots for SNRs 

from 27 dB to 30 dB. At each of the included SNRs, there is no statistically significant 

difference between any of the factors. All of them are included in the best set for each 

SNR. 

 

 

 



www.manaraa.com

 

64 
 

Table 4  

Best sets of affine resolutions for GSV-PLS classifier. 

Affine Resolution Appeared in Best Set Total Count 
1 0 dB, 3 dB, 9 – 30 dB 10 

5 0 – 30 dB 11 

10 0 dB, 9 dB, 12 dB, 18 – 30 dB 8 

Note: The column labeled Appeared in Best Set indicates the SNR trials for which each 

affine resolution was selected as one of the optimal resolutions. 

 

 The above table contains the number of times each affine resolution appeared in 

the best set for a given SNR. There were more cases in the GSV-PLS trials that no 

statistical difference was apparent between the affine resolutions than in the GMM-UBM 

trials. This indicates that the affine resolution plays less of a role in determining the 

performance of the GSV-PLS system. Still, an affine resolution of 5 appeared in the best 

set at all SNRs, so this was chosen as the optimal value for this classifier. 
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Table 5  

Average EERs for GSV-PLS affine resolution trials. 

Test Condition Feature Affine Res. 1 Affine Res. 5 Affine Res. 10 
0 dB SNR ACW 43.94 44.02 43.95 

CEP 43.29 43.68 43.48 

PFL 41.36 41.31 41.30 

MFCC 38.85 39.08 39.33 

3 dB SNR ACW 38.53 38.53 39.42 

CEP 36.94 37.12 38.11 

PFL 36.55 36.15 37.23 

MFCC 32.24 32.24 33.34 

6 dB SNR ACW 31.66 31.66 32.08 

CEP 29.95 30.00 30.90 

PFL 28.54 28.56 29.02 

MFCC 26.32 26.21 27.08 

9 dB SNR ACW 25.07 24.74 24.44 

CEP 23.66 23.80 23.18 

PFL 21.89 21.66 21.19 

MFCC 19.17 19.35 18.93 

12 dB SNR ACW 17.99 18.31 18.45 

CEP 17.65 17.75 18.17 

PFL 16.24 16.04 16.31 

MFCC 13.96 13.70 13.74 

15 dB SNR ACW 12.91 13.04 13.74 

CEP 12.70 12.82 13.39 

PFL 12.18 12.20 12.84 

MFCC 10.29 10.10 11.17 

18 dB SNR ACW 9.63 9.62 9.54 

CEP 9.52 9.63 9.46 

PFL 9.27 9.32 9.54 

MFCC 8.29 8.45 8.30 

21 dB SNR ACW 7.18 7.02 6.96 

CEP 7.48 7.61 7.06 

PFL 7.38 7.34 7.43 

MFCC 6.71 6.79 6.80 

24 dB SNR ACW 5.49 5.62 5.47 

CEP 6.24 6.18 6.38 

PFL 5.82 5.91 5.61 

MFCC 5.48 5.51 5.68 

27 dB SNR ACW 4.61 4.77 4.74 

CEP 5.33 5.27 5.35 

PFL 5.44 5.42 5.33 

MFCC 4.32 4.47 4.51 

30 dB SNR ACW 3.85 3.89 3.95 

CEP 4.68 4.68 4.72 

PFL 5.04 4.99 4.95 

MFCC 3.64 3.61 3.81 
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4.2 Enhancement Methods 

Using the optimal affine resolutions obtained in the previous experiment, the 

efficacy of the proposed enhancement methods was examined. Experiments were 

completed trying blind SNR estimation and perfect SNR estimation against doing nothing 

to corrupted speech. ANOVA2 was performed to determine the validity of using blind 

SNR estimation and to determine the optimal feature selection to use in the next stage. 

The results for both factors are detailed ahead. Average equal error rates for each of the 

two sets of 672 trials in this experiment are tabulated at the end of this subsection. 

4.2.1 SNR estimation and affine transform. The multiple comparison plots used 

to analyze the performance of the three SNR estimation and affine transform 

configurations are shown below. These experiments were done for the GMM-UBM 

system and the GSV-PLS system separately.  

4.2.1.1 GMM-UBM enhancement results. First, the results for the GMM-UBM 

enhancement trials are provided. Each plot shows the 95% confidence intervals for the 

three compared configurations at a specific SNR, based on performing 10 trials per 

configuration. A summary of the best SNR estimation modes is provided at the end of the 

section. 
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Figure 12. GMM-UBM SNR estimation mode for 0 dB to 5 dB. 

 

 Figure 12 shows the results obtained for the GMM-UBM SNR estimation mode 

trials at SNRs from 0 dB to 5 dB. In each of these cases, there is no statistically 

significant difference between the means of the EERs obtained using blind and perfect 
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SNR estimation; however, there is a vast difference in the performance of those two 

compared to doing no enhancement. At low SNRs like this, where the speech is heavily 

corrupted, this indicates that the affine transform does a very good job at reducing 

training to testing mismatch. However, even with the enhancement, the overall system 

performance is still beleaguered with the troubles of excessive additive noise. 

 



www.manaraa.com

 

69 
 

 

Figure 13. GMM-UBM SNR estimation mode for 6 dB to 11 dB. 

 

 Figure 13 shows the results from the GMM-UBM SNR estimation mode trials for 

SNRs ranging from 6 dB to 11 dB. Again, at all of these SNRs, there is no statistically 
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significant difference between the blind and perfect SNR estimation scenarios, which 

always outperform the scenario where no enhancement is applied. 

 

 

Figure 14. GMM-UBM SNR estimation mode for 12 dB to 17 dB. 



www.manaraa.com

 

71 
 

 Figure 14 contains the multiple comparison plots for the GMM-UBM SNR 

estimation mode trials for SNRs ranging from 12 dB to 17 dB. For SNRs of 12, 13, 14, 

and 17 dB, this same results as all of the previous trials emerge. In these cases, blind and 

perfect SNR estimation are not statistically different, and both far exceed the 

performance of doing nothing. However, for SNRs 15 dB and 16 dB, while blind and 

perfect SNR estimation still outperform no enhancement, there is a statistically 

significant difference between perfect and blind SNR estimation. Although in these cases, 

blind SNR estimation underperforms compared to the control scenario, such a situation is 

exceedingly rare for the GMM-UBM system, as will be shown towards the end of this 

subsection. 
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Figure 15. GMM-UBM SNR estimation mode for 18 dB to 23 dB. 

 

 Figure 15 contains the multiple comparison plots for the GMM-UBM SNR 

estimation mode trials for SNRs ranging from 18 dB to 23 dB. For all of these SNRs, the 

blind and perfect SNR estimation modes are not statistically different. Additionally, no 
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enhancement is still inferior to using both blind and perfect SNR estimation. This 

indicates that even as higher SNR levels are tested, the SNR estimation and affine 

transform enhancement is still effective. However, it can be seen in Figure 15 that as 

SNR values increase, the enhancement method, while still statistically significant, does 

not provide as much of an increase in system performance than at lower SNRs. This is 

simply because there is less overhead error for the enhancement method to compensate 

than at lower SNRs. Whereas at lower SNR values the difference in EERs between 

enhancement and no enhancement ranged from about 6 to 15 percentage points, SNRs 

higher than about 20 dB see a difference of only about 3 to 4 percentage points. As the 

SNR further increases this difference will continue to decrease, but this is to be expected. 
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Figure 16. GMM-UBM SNR estimation mode for 24 dB to 29 dB. 

 

 Figure 16 contains the multiple comparison plots for the GMM-UBM SNR 

estimation mode trials for SNRs ranging from 24 dB to 29 dB. Once again, blind and 
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perfect SNR estimation are not statistically different, and both are statistically different 

from no enhancement in all cases. 

 

 

Figure 17. GMM-UBM SNR estimation mode for 30 dB and clean speech. 

 

 Finally, Figure 17 displays the multiple comparison plots for the GMM-UBM 

SNR estimation mode trials for speech corrupted at 30 dB and for clean speech. In the 

case of the 30 dB SNR trials, there is no statistically significant difference between blind 

and perfect SNR estimation. There is also no statistically significant difference between 

blind SNR estimation and no enhancement, but there is a statistically significant 

difference between perfect SNR estimation and no enhancement. Even though there is no 

statistically significant difference between blind SNR estimation and no enhancement in 

this case, it is still recommended to use blind SNR estimation since the two methods were 

statistically different at every other SNR.  
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 When the factors were tested using clean speech, there was no statistically 

significant difference between any of the methods. This is both expected and desirable, as 

this shows that the SNR estimation technique in combination with the affine transform 

will not cause the performance of the system to become significantly worse when clean 

test utterances are used. 

 Table 6 summarizes the results from the GMM-UBM SNR estimation mode trials. 

The total number of times each SNR estimation mode was statistically shown to be one 

of the best configurations at a specific SNR is included. This shows that out of the 32 

trials with SNRs ranging from 0 dB to 30 dB plus clean speech, blind SNR estimation 

was one of the best performing methods 29 times. Only in the case of clean speech was 

blind SNR estimation statistically shown to be no different than doing no enhancement at 

all. Considering all of the trials, blind SNR estimation was one of the best methods in 

90.6% of the trials for the GMM-UBM system. 
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Table 6  

Best signal to noise ratio estimation modes for GMM-UBM trials at all SNRs. 

SNR Estimation Mode Appeared in Best Set Total Count 
Nothing Clean 1 

Blind 0 – 14 dB, 17 – 29 dB, Clean 29 

Perfect 0 – 30 dB, Clean 32 

Note: The column labeled Appeared in Best Set indicates the SNR trials for which each 

SNR estimation mode was selected as one of the optimal configurations. 

 

 

4.2.1.2 GSV-PLS enhancement results. The results for the GSV-PLS 

enhancement trials are provided. Each plot shows the 95% confidence intervals for the 

three compared configurations at a specific SNR, based on performing 10 trials per 

configuration. A summary of the best SNR estimation modes is provided at the end of the 

section. 

 



www.manaraa.com

 

78 
 

 

Figure 18. GSV-PLS SNR estimation mode for 0 dB to 5 dB. 

 

 Figure 18 shows the 95% confidence intervals for the GSV-PLS SNR estimation 

mode trials for SNRs ranging from 0 dB to 5 dB. For SNRs of 0, 1, 4, and 5 dB, the 

difference in the means of the EERs for the blind and perfect SNR estimation trials was 
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not statistically significant. In each case, the difference in the means of EERs from both 

SNR estimation trials to the means of EERs using no enhancement were statistically 

significant. At an SNR of 3 dB, both SNR estimation methods are statistically superior to 

no enhancement, but perfect SNR estimation is shown to be better than blind SNR 

estimation. Such a scenario is to be expected sometimes, but it is still relatively rare 

(though not as rare as with the GMM-UBM classifier). 

 What was surprising was that for an SNR of 2 dB, blind SNR estimation is shown 

to be statistically better than perfect SNR estimation. Upon further investigation, such a 

situation can arise when the inherent error involved in applying the affine transform 

works in the favor of the classifier. Due to the randomness of the speech signals used to 

train the affine transforms, and the fact that those training utterances will vary from the 

testing utterances to which the transforms are applied, the affine transform will never be 

able to totally eliminate the training to testing mismatch. Given a large enough sample of 

trials, occasionally applying an affine transform not trained on the exact SNR at which 

the test utterance is corrupted will cause a better reduction in mismatch than the “correct” 

affine transform would.  

To validate this idea, a single trial where the blind SNR estimation caused the 

“wrong” affine transform to be applied was compared against the same trial with the 

“correct” affine transform applied. The MFCC feature extracted from a corrupted test 

utterance was enhanced using both the “correct” and “wrong” affine transforms to 

generate two different features vectors. Both of these were tried against a single speaker 

model to whom they did belong and against a single speaker model to whom they did not. 

The result was that the “wrong” affine transform generated a higher genuine score and a 
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lower impostor score. This means that the error in the blind SNR estimation produced a 

better result for this one trial than the “correct” affine transform applied using perfect 

SNR estimation did. Since this can happen on a trial-by-trial basis, given enough trials it 

is possible for the blind SNR estimation to result in a lower EER than perfect SNR 

estimation. In the table further on where the average EERs for all of the trials done for 

this experiment are tabulated, occasionally the blind SNR estimation has a lower average 

EER than the perfect SNR estimation; however, it is usually not a statistically significant 

difference. For this scenario to occur enough to cause a statistically significant increase in 

performance for the blind SNR estimator over the control condition is exceedingly rare, 

and in fact the GSV-PLS trial at 2 dB was the only time it was observed. 
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Figure 19. GSV-PLS SNR estimation mode for 6 dB to 11 dB. 

 

 Figure 19 shows the 95% confidence intervals for the GSV-PLS SNR estimation 

trials for SNRs ranging from 6 dB to 11 dB. For SNRs of 6, 7, 10, and 11 dB, the blind 

and perfect SNR estimation methods are not statistically different, but both are better than 
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no enhancement. For SNRs of 8 dB and 9 dB, the differences in means between both 

SNR estimation modes and no enhancement are statistically significant. Additionally, 

perfect SNR estimation is statistically shown to perform better than blind SNR estimation 

in these two cases. 

 



www.manaraa.com

 

83 
 

 

Figure 20. GSV-PLS SNR estimation mode for 12 dB to 17 dB. 

 

 Figure 20 shows the 95 % confidence intervals for the GSV-PLS SNR estimation 

mode trials for SNRs ranging from 12 dB to 17 dB. For SNRs of 12, 15, 16, and 17 dB, 

the blind and perfect SNR estimation methods are not statistically different, but both are 
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better than no enhancement. For SNRs of 13 dB and 14 dB, the differences in means 

between both SNR estimation modes and no enhancement are statistically significant. 

Additionally, perfect SNR estimation is statistically shown to perform better than blind 

SNR estimation in these two cases. 
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Figure 21. GSV-PLS SNR estimation mode for 18 dB to 23 dB. 

 

 Figure 21 shows the 95 % confidence intervals for the GSV-PLS SNR estimation 

mode trials for SNRs ranging from 18 dB to 23 dB. In all cases, the difference in the 

means of the EERs obtained from trials using blind SNR estimation and perfect SNR 
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estimation are not statistically different. Additionally, in all cases, both SNR estimation 

methods are statistically shown to perform better than no enhancement. 

 

 

Figure 22. GSV-PLS SNR estimation mode for 24 dB to 29 dB. 
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 Figure 22 shows the 95% confidence intervals for the GSV-PLS SNR estimation 

mode trials for SNRs ranging from 24 dB to 29 dB. For SNRs of 24, 25, and 29 dB, there 

was no statistically significant difference in the means of the EERs obtained for trials 

using blind and perfect SNR estimation, but both were better than doing no enhancement. 

For SNRs of 26, 27, and 28 dB, perfect SNR estimation was shown to be better than blind 

SNR estimation, and both were again better than doing no enhancement. 

 

 

Figure 23. GSV-PLS SNR estimation mode for 30 dB and clean speech. 

 

 Finally, Figure 23 displays the 95% confidence intervals for the GSV-PLS SNR 

estimation mode trials for speech corrupted at 30 dB and for clean speech. In the case of 

the 30 dB SNR trials, both SNR estimation modes were shown to be better than doing no 

enhancement, and perfect SNR estimation was shown to be better than blind SNR 

estimation. 
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 When the factors were tested using clean speech, there was no statistically 

significant difference between any of the methods. Again, this is both expected and 

desirable, as this shows that the SNR estimation technique in combination with the affine 

transform will not cause the performance of the system to become significantly worse 

when clean test utterances are used. 

 Table 7 summarizes the results from the GSV-PLS SNR estimation mode trials. 

The total number of times each SNR estimation mode was statistically shown to be one 

of the best configurations at a specific SNR is included. This shows that out of the 32 

trials with SNRs ranging from 0 dB to 30 dB plus clean speech, blind SNR estimation 

was one of the best performing methods 23 times. Only in the case of clean speech was 

blind SNR estimation statistically shown to be no different than doing no enhancement at 

all. Considering all of the trials, blind SNR estimation was one of the best methods in 

71.9% of the trials for the GSV-PLS system and performed better than the control 

configuration in one case. 
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Table 7  

Best signal to noise ratio estimation modes for GSV-PLS trials at all SNRs. 

SNR Estimation Mode Appeared in Best Set Total Count 
Nothing Clean 1 

Blind 0 – 2 dB, 4 – 7 dB, 10 – 12 dB, 25 – 25 dB, 29 dB, Clean 23 

Perfect 0 – 2 dB, 3 – 30 dB, Clean 31 

Note: The column labeled Appeared in Best Set indicates the SNR trials for which each 

SNR estimation mode was selected as one of the optimal configurations. 

 

4.2.2 Optimal feature selection. A two-way analysis of variance was performed 

using the EERs obtained from all of the blind vs. perfect vs. no enhancement trials. In 

addition to the sets of optimal enhancement methods, optimal features and fusions were 

analyzed using multiple comparison of means. The 95% confidence interval plots of each 

of the trials at every SNR are provided ahead. 

4.2.2.1 GMM-UBM feature selection results. The optimal features of each SNR 

were analyzed for the GMM-UBM and GSV-PLS systems separately. The results for the 

GMM-UBM feature selection are provided first, including a summary of these results at 

the end of the subsection. 
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Figure 24. GMM-UBM features and fusions for 0 dB to 5 dB. 

 

 Figure 24 shows the 95% confidence intervals for all the features and fusions in 

the GMM-UBM trials from SNRs ranging from 0 dB to 5 dB. In every case, MFCC 

outperforms all of the other features and fusions. At low SNRs like this, the low 
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performance of the other features prevents the fusions from giving good results, but this 

will eventually change as the SNR increases. 

 

 

Figure 25. GMM-UBM features and fusions for 6 dB to 11 dB. 
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 Figure 25 shows the 95% confidence intervals for all the features and fusions in 

the GMM-UBM trials from SNRs ranging from 6 dB to 11 dB. For SNRs ranging from 6 

dB to 9 dB, MFCC again performs better than all the other features and fusions. At an 

SNR of 10 dB, there is no statistically significant difference between the means in the 

EERs obtained using MFCC, max fusion, and sum fusion. There is also no statistically 

significant difference between the means in the EERs obtained using any of the fusion 

strategies, but there is a statistically significant difference between the means in the EERs 

obtained using MFCC and using product fusion. Therefore, the best set at an SNR of 10 

dB is taken to be MFCC, max fusion, and sum fusion. At an SNR of 11 dB, there is no 

statistically significant difference between the means in the EERs obtained using MFCC 

or any of the fusion strategies, so all are considered optimal. 
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Figure 26. GMM-UBM features and fusions for 12 dB to 17 dB. 

 

 Figure 26 shows the 95% confidence intervals for all the features and fusions in 

the GMM-UBM trials from SNRs ranging from 12 dB to 17 dB. For each of these SNRs, 
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there is no statistically significant difference in the means of the EERs obtained using 

MFCC or any of the fusion strategies, so all are considered optimal. 

 

 

Figure 27. GMM-UBM features and fusions for 18 dB to 23 dB. 
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 Figure 27 shows the 95% confidence intervals for all the features and fusions in 

the GMM-UBM trials from SNRs ranging from 18 dB to 23 dB. For SNRs of 18 dB and 

19 dB, there is no statistically significant difference in the means of the EERs obtained 

using MFCC and all of the fusion strategies, so all are considered optimal. At an SNR of 

21 dB, there is no statistically significant difference between the means of the EERs 

obtained using MFCC, sum fusion, and product fusion. There is also no statistically 

significant difference in the means of the EERs obtained using MFCC and maximum 

fusion; however, there is a statistically significant difference between maximum fusion 

and the other two fusion strategies. Therefore, sum fusion, and product fusion were 

chosen as the best features at an SNR of 21 dB. For SNRs of 20, 22, and 23 dB, there is 

no statistically significant difference in the means of the EERs obtained using sum and 

product fusion, but these two outperform all other features and fusion strategies and were 

therefore chosen as the optimal features at these SNRs. As the SNR increases and causes 

the CEP, ACW, and PFL features to perform better, the fusion strategies can be seen to 

start outperforming MFCC unlike in the lower SNR trials. 
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Figure 28. GMM-UBM features and fusions for 24 dB to 29 dB. 

 

 Figure 28 shows the 95% confidence intervals for all the features and fusions in 

the GMM-UBM trials from SNRs ranging from 24 dB to 29 dB. In all cases, sum and 

product fusion outperform all other features and fusions, and there is no statistically 
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significant difference in the means of the EERs obtained using the two. At an SNR of 29 

dB, there are no statistically significant differences in the means of the EERs obtained 

using sum fusion, product fusion, and MFCC, but there is also no statistically significant 

difference in the means of the EERs obtained using MFCC and maximum fusion. 

Because there are statistically significant differences in the means of the EERs obtained 

using maximum fusion and the other two fusion strategies, sum fusion and product fusion 

were chosen as the optimal set. 

 

 

Figure 29. GMM-UBM features and fusions for 30 dB and clean speech. 

 

 Figure 29 shows the 95% confidence intervals for all the features and fusions in 

the GMM-UBM trials where test utterances were corrupted to a 30 dB SNR and were not 

corrupted at all. At an SNR of 30 dB, sum and product fusion outperform all other 

features and fusions, and there is no statistically significant difference in the means of the 

EERs obtained using the two. Using clean speech, there is no statistically significant 

difference in the means of the EERs obtained using MFCC, sum fusion, and product 
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fusion. However, there was also no statistically difference in the means of the EERs 

obtained using MFCC and ACW. Because there were statistically significant differences 

in the means of the EERs obtained using sum and product fusion and using the ACW 

feature, sum and product fusion were selected as the optimal features using clean speech. 

 

Table 8  

Summary of optimal feature selection for GMM-UBM classifier. 

Feature/Fusion Appeared in Best Set Total Count 
ACW None 0 

CEP None 0 

PFL/PST None 0 

MFCC 0 – 19 dB 20 

Max Fusion 10 – 19 dB 10 

Sum Fusion 10 – 30 dB, Clean 22 

Product Fusion 11 – 30, dB Clean 21 

Note: The column labeled Appeared in Best Set indicates the SNR trials for which each 

feature was selected as one of the optimal features. 

 

 Table 8 shows that there was not much difference between the system 

performance obtained using MFCC, sum fusion, and product fusion. Any of these 

features would be a good choice to use for the GMM-UBM system. The MFCC feature 

performed best at low to middling SNR levels. The fusion strategies began to surpass the 

MFCC feature at middling to high SNR levels, where the ACW, CEP, and PFL features 

were also able to perform better. As sum fusion appeared in the best set for the GMM-

UBM trials most numerously (68.8% of all trials), this fusion strategy was chosen as the 

optimal feature to use when comparing the overall system performance of the GMM-

UBM and GSV-PLS classifiers. 
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4.2.2.2 GSV-PLS feature selection results. The optimal features selection results 

for the GSV-PLS system are provided henceforth. A summary of these results is included 

at the end of the subsection. 

 

 

Figure 30. GSV-PLS features and fusions for 0 dB to 5 dB. 
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 Figure 30 shows the 95% confidence intervals for all the features and fusions in 

the GSV-PLS trials from SNRs ranging from 0 dB to 5 dB. For each of these SNRs, there 

was no statistically significant difference in the means of the EERs obtained using any of 

the fusion methods. For SNRs of 0, 2, 4, and 5 dB, there was no statistical difference in 

the means of the EERs obtained using MFCC and any of the fusion strategies, so all four 

of these were taken as the optimal set. For SNRs of 1 dB and 3 dB, there were no 

statistically significant differences between the means of the EERs obtained using MFCC 

and the sum and maximum fusion strategies, but there was a statistically significant 

difference in the means of the EERs obtained using MFCC and the product fusion 

strategy. For these two SNRs, MFCC was taken to be the best feature. Contrary to the 

low SNR trials with the GMM-UBM system, the fusion strategies evidently perform 

almost as well as the MFCC feature even at low SNRs. This indicates that there is a 

smaller difference in the performance of MFCC compared to the other three features in 

the GSV-PLS system. 
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Figure 31. GSV-PLS features and fusions for 6 dB to 11 dB. 

 

 Figure 31 shows the 95% confidence intervals for all the features and fusions in 

the GSV-PLS trials from SNRs ranging from 6 dB to 11 dB. For SNRs of 6, 7, 8, 10, and 

11 dB, there is no statistically significant difference between the means of the EERs 
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obtained using MFCC or any of the fusion strategies; therefore, all are taken as optimal 

for these SNRs. At an SNR of 9 dB, there is no statistically significant difference 

between the means of the EERs obtained using any of the fusion strategies. There is also 

no statistically significant difference between the means of the EERs obtained using 

maximum fusion and the MFCC feature; however, there are statistically significant 

differences between the means of the EERs obtained using the MFCC feature and sum 

and product fusion. For an SNR of 9 dB, sum and product fusion were selected as the 

optimal features. 
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Figure 32. GSV-PLS features and fusions for 12 dB to 17 dB. 

 

 Figure 32 shows the 95% confidence intervals for all the features and fusions in 

the GSV-PLS trials from SNRs ranging from 12 dB to 17 dB. For SNRs of 12 dB and 14 

dB, there is no statistically significant difference between the means of the EERs 
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obtained using any of the fusion strategies, so all are taken to be optimal. At SNRs of 13, 

16, and 17 dB, there is no statistically significant difference between the means of the 

EERs obtained using sum and product fusion, and these two methods outperform all 

others. At an SNR of 15 dB, there is no statistically significant difference between the 

means of the EERs obtained using sum and product fusion. There is also no statistically 

significant difference between the means of the EERs obtained using maximum and 

product fusion; however, because there is a statistically significant difference in the 

means of the EERs obtained using sum and maximum fusion, sum fusion is taken to be 

the best feature at an SNR of 15 dB. 
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Figure 33. GSV-PLS features and fusions for 18 dB to 23 dB. 

 

 Figure 33 shows the 95% confidence intervals for all the features and fusions in 

the GSV-PLS trials from SNRs ranging from 18 dB to 23 dB. At each of these SNR 

levels, there is no statistically significant difference between the means of the EERs 
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obtained using sum and product fusion. Both of these fusion strategies outperform all 

other features and fusions at each of the SNRs from 18 dB to 23 dB, and so were chosen 

as the optimal features. 

 

 

Figure 34. GSV-PLS features and fusions for 24 dB to 29 dB. 
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 Figure 34 shows the 95% confidence intervals for all the features and fusions in 

the GSV-PLS trials from SNRs ranging from 24 dB to 29 dB. At each of these SNR 

levels, there is no statistically significant difference between the means of the EERs 

obtained using sum and product fusion. Both of these fusion strategies outperform all 

other features and fusions at each of the SNRs from 24 dB to 29 dB, and so were chosen 

as the optimal features. 

 

 

Figure 35. GSV-PLS features and fusions for 30 dB and clean speech. 

 

 Figure 35 shows the 95% confidence intervals for all of the features and fusions in 

the GSV-PLS trials where the test utterances were corrupted to an SNR of 30 dB and 

were not corrupted at all. In both cases, there is no statistically significant difference 

between the means of the EERs obtained using sum and product fusion, and both of these 

methods outperform all other features and fusions. 
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Table 9  

Summary of optimal feature selection for GSV-PLS classifier. 

Feature/Fusion Appeared in Best Set Total Count 
ACW None 0 

CEP None 0 

PFL/PST None 0 

MFCC 0 – 8 dB, 10 dB, 11 dB 11 

Max Fusion 0 dB, 2 dB, 4 – 8 dB, 10 – 12 dB, 14 dB 11 

Sum Fusion 0 dB, 2 dB, 4 – 30 dB, Clean 30 

Product Fusion 0 dB, 2 dB, 4 – 14 dB, 16 – 30 dB, Clean 29 

Note: The column labeled Appeared in Best Set indicates the SNR trials for which each 

feature was selected as one of the optimal features. 

 

 Table 9 illustrates how sum fusion and product fusion outperformed all of the 

other features and fusions for the GSV-PLS trials. Compared to the GMM-UBM trials, 

sum fusion and product fusion were much more dominant, appearing in the best set in 

93.8% and 90.6% of all the trials, respectively. This occurred because at lower SNR 

levels, there was less of a stark difference in the performance of the MFCC feature 

compared to ACW, CEP, and PFL. Whereas the GMM-UBM trials saw the MFCC 

feature performing best at lower SNRs, with the GSV-PLS trials the performance of the 

fusion methods was comparable and occasionally better than the MFCC feature even at 

lower SNRs. Because the sum fusion strategy again appeared in the optimal feature set 

most numerously, it was chosen for the GSV-PLS classifier’s optimal configuration to be 

compared against the GMM-UBM classifier. 
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4.2.3 Tabulation of results from enhancement method trials. This subsection 

contains a full tabulation of the average equal error rates obtained for the enhancement 

method trials. Average EERs calculated over 10 rotations are provided for every test 

condition, every feature and fusion type, and all SNR estimation modalities. The two 

tables that follow pertain to the results obtained for each classifier. 
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Table 10  

Average equal error rates for individual features, fusions, and signal to noise ratio 
estimation modes for GMM-UBM trials. 

Test Condition Feature/Fusion Nothing Blind Perfect 

0 dB SNR ACW 45.15 42.60 42.65 

CEP 45.47 40.13 40.32 

PFL 44.90 41.38 41.55 

MFCC 43.55 35.26 35.56 

Max 44.84 36.89 37.08 

Sum 44.70 38.86 38.96 

Product 44.81 38.99 39.34 

1 dB SNR ACW 44.38 40.97 40.93 

CEP 43.92 38.09 38.18 

PFL 43.86 39.58 39.84 

MFCC 42.41 32.67 32.85 

Max 44.03 35.34 35.31 

Sum 43.48 37.16 37.37 

Product 43.53 37.22 37.30 

2 dB SNR ACW 43.20 39.10 39.14 

CEP 43.34 36.73 37.05 

PFL 42.65 38.23 38.30 

MFCC 41.62 30.23 30.47 

Max 42.69 32.83 32.81 

Sum 42.42 34.68 34.74 

Product 42.46 34.86 35.01 

3 dB SNR ACW 41.70 37.28 37.28 

CEP 41.71 34.84 34.86 

PFL 41.58 36.14 36.16 

MFCC 40.10 27.78 28.12 

Max 41.25 31.35 31.54 

Sum 40.65 32.18 32.44 

Product 40.60 32.39 32.62 

4 dB SNR ACW 40.23 34.45 34.64 

CEP 40.18 31.08 31.74 

PFL 40.43 33.21 33.18 

MFCC 38.87 25.43 25.30 

Max 39.90 28.79 28.89 

Sum 39.73 29.82 29.97 

Product 39.78 29.99 29.92 

5 dB SNR ACW 39.22 32.94 32.97 

CEP 39.11 28.93 29.37 

PFL 38.36 31.26 31.36 

MFCC 37.45 22.74 23.03 

Max 38.37 27.49 27.70 

Sum 37.90 26.88 27.13 

Product 37.77 27.06 27.43 

6 dB SNR ACW 37.65 30.81 30.52 

CEP 37.58 27.09 27.31 

PFL 36.32 28.23 28.14 

MFCC 36.22 20.79 20.72 

Max 36.97 23.75 23.75 

Sum 36.53 24.70 25.00 

Product 36.54 24.67 25.07 
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Table 10 (continued) 

Test Condition Feature/Fusion Nothing Blind Perfect 

7 dB SNR ACW 36.01 28.34 27.79 

CEP 36.05 24.89 24.47 

PFL 35.08 25.97 25.64 

MFCC 33.95 19.21 19.16 

Max 34.85 21.10 20.91 

Sum 34.55 22.50 22.45 

Product 34.51 22.61 22.48 

8 dB SNR ACW 33.48 25.74 25.44 

CEP 33.57 22.43 22.03 

PFL 33.49 23.34 22.97 

MFCC 32.21 16.80 16.46 

Max 32.85 19.49 19.03 

Sum 32.52 19.68 19.83 

Product 32.58 19.79 19.89 

9 dB SNR ACW 31.82 23.13 23.26 

CEP 31.90 19.93 19.61 

PFL 31.02 21.27 21.15 

MFCC 29.77 15.30 14.76 

Max 30.76 16.81 16.63 

Sum 30.39 17.37 17.15 

Product 30.23 17.43 17.30 

10 dB SNR ACW 30.00 20.50 20.64 

CEP 29.66 17.44 17.21 

PFL 29.43 18.85 18.38 

MFCC 27.90 13.97 13.64 

Max 28.78 14.70 14.28 

Sum 28.34 15.02 14.81 

Product 28.39 15.21 14.94 

11 dB SNR ACW 27.47 18.37 18.22 

CEP 27.37 15.57 15.24 

PFL 26.53 16.98 16.44 

MFCC 25.71 12.30 12.00 

Max 26.05 13.05 12.43 

Sum 25.39 13.47 13.07 

Product 25.37 13.63 13.30 

12 dB SNR ACW 25.32 16.08 15.76 

CEP 25.21 13.42 12.97 

PFL 24.31 14.45 14.33 

MFCC 23.00 11.35 10.87 

Max 24.11 11.63 11.29 

Sum 23.14 11.26 11.22 

Product 23.04 11.35 11.29 

13 dB SNR ACW 22.70 14.26 14.00 

CEP 23.21 12.05 11.59 

PFL 22.31 12.98 12.56 

MFCC 20.54 9.99 9.65 

Max 21.44 10.33 10.00 

Sum 20.68 9.93 9.65 

Product 20.63 9.93 9.69 
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Table 10 (continued) 

Test Condition Feature/Fusion Nothing Blind Perfect 

14 dB SNR ACW 20.90 12.10 11.99 

CEP 20.92 11.32 10.95 

PFL 20.05 12.06 11.51 

MFCC 18.34 9.17 8.58 

Max 19.73 9.28 9.10 

Sum 18.39 9.31 8.87 

Product 18.26 9.41 8.98 

15 dB SNR ACW 18.89 10.82 10.25 

CEP 18.52 10.38 9.88 

PFL 17.72 10.73 10.06 

MFCC 16.56 8.42 8.06 

Max 17.18 8.47 8.18 

Sum 16.34 8.20 7.71 

Product 16.27 8.22 7.74 

16 dB SNR ACW 16.70 9.86 9.11 

CEP 16.54 9.25 8.90 

PFL 15.87 9.87 9.44 

MFCC 14.56 7.70 7.39 

Max 15.18 7.86 7.49 

Sum 14.51 7.54 7.08 

Product 14.44 7.51 7.13 

17 dB SNR ACW 14.73 8.62 8.10 

CEP 14.71 8.60 8.18 

PFL 13.73 8.58 8.20 

MFCC 12.89 6.80 6.54 

Max 13.25 7.07 6.87 

Sum 12.58 6.57 6.38 

Product 12.60 6.64 6.35 

18 dB SNR ACW 13.10 7.57 7.14 

CEP 12.86 7.67 7.43 

PFL 12.27 8.09 7.86 

MFCC 11.16 6.48 6.27 

Max 11.13 6.51 6.41 

Sum 10.99 6.05 5.83 

Product 10.92 6.05 5.84 

19 dB SNR ACW 11.76 6.86 6.61 

CEP 11.67 7.08 6.79 

PFL 11.18 7.15 7.14 

MFCC 9.86 5.94 5.95 

Max 10.09 6.05 5.99 

Sum 9.75 5.55 5.42 

Product 9.77 5.52 5.40 

20 dB SNR ACW 10.36 6.28 6.18 

CEP 10.28 6.17 5.92 

PFL 10.01 6.44 6.34 

MFCC 8.72 6.01 5.72 

Max 8.78 5.69 5.34 

Sum 8.26 4.93 4.90 

Product 8.28 4.89 4.88 
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Table 10 (continued) 

Test Condition Feature/Fusion Nothing Blind Perfect 

21 dB SNR ACW 9.55 5.72 5.67 

CEP 8.94 5.78 5.64 

PFL 8.87 6.10 6.11 

MFCC 7.77 5.24 5.22 

Max 7.76 5.34 5.25 

Sum 7.41 4.65 4.56 

Product 7.44 4.62 4.57 

22 dB SNR ACW 8.06 5.18 5.02 

CEP 8.05 5.41 5.29 

PFL 8.11 5.96 5.80 

MFCC 7.28 5.00 4.91 

Max 6.96 4.91 4.95 

Sum 6.44 4.10 4.16 

Product 6.43 4.04 4.10 

23 dB SNR ACW 7.31 4.95 4.81 

CEP 7.39 5.13 5.10 

PFL 7.05 5.53 5.52 

MFCC 6.31 4.87 4.81 

Max 6.25 4.66 4.48 

Sum 5.87 3.89 3.94 

Product 5.84 3.89 3.93 

24 dB SNR ACW 6.50 4.78 4.52 

CEP 6.67 4.97 4.80 

PFL 6.40 5.20 5.06 

MFCC 5.77 4.48 4.36 

Max 5.77 4.49 4.45 

Sum 5.35 3.82 3.74 

Product 5.40 3.79 3.72 

25 dB SNR ACW 5.94 4.55 4.34 

CEP 6.43 4.86 4.72 

PFL 6.08 4.85 4.75 

MFCC 5.15 4.61 4.13 

Max 5.02 4.40 4.29 

Sum 4.60 3.61 3.53 

Product 4.59 3.56 3.49 

26 dB SNR ACW 5.43 4.26 4.02 

CEP 5.81 4.59 4.31 

PFL 5.61 4.67 4.53 

MFCC 4.87 4.36 3.97 

Max 4.84 4.11 4.02 

Sum 4.54 3.51 3.52 

Product 4.58 3.48 3.52 

27 dB SNR ACW 5.18 4.15 4.02 

CEP 5.13 4.31 4.32 

PFL 4.95 4.50 4.41 

MFCC 4.44 4.14 3.82 

Max 4.56 4.19 3.95 

Sum 4.10 3.46 3.25 

Product 4.06 3.43 3.24 
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Table 10 (continued) 

Test Condition Feature/Fusion Nothing Blind Perfect 

28 dB SNR ACW 4.52 3.88 3.66 

CEP 4.55 4.16 4.10 

PFL 4.68 4.34 4.22 

MFCC 4.20 3.93 3.73 

Max 4.32 4.08 3.69 

Sum 3.75 3.19 3.09 

Product 3.75 3.18 3.06 

29 dB SNR ACW 4.39 3.78 3.45 

CEP 4.37 4.03 3.84 

PFL 4.52 4.12 4.11 

MFCC 3.87 3.75 3.42 

Max 4.03 3.86 3.68 

Sum 3.52 3.25 3.00 

Product 3.56 3.24 2.99 

30 dB SNR ACW 4.18 3.57 3.45 

CEP 4.23 4.04 3.76 

PFL 4.00 3.95 3.80 

MFCC 3.56 3.60 3.45 

Max 3.73 3.50 3.30 

Sum 3.15 2.93 2.82 

Product 3.12 2.90 2.80 

Clean Speech ACW 2.49 2.46 2.49 

CEP 3.03 3.01 3.03 

PFL 2.68 2.66 2.68 

MFCC 2.25 2.32 2.25 

Max 2.55 2.62 2.55 

Sum 2.08 2.07 2.08 

Product 2.08 2.05 2.08 

Note: The columns labeled Nothing, Blind, and Perfect denote the SNR estimation mode 

used for each trial. Nothing means that no enhancement was used. 

 

 Table 10 contains the average equal error rates taken over 10 rotations for each of 

the feature, fusions, SNR estimation modes, and test conditions used in the GMM-UBM 

trials. 
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Table 11  

Average equal error rates for individual features, fusions, and signal to noise ratio 
estimation modes for GSV-PLS trials. 

Test Condition Feature/Fusion Nothing Blind Perfect 

0 dB SNR ACW 45.64 42.72 42.98 

CEP 45.96 41.77 42.01 

PFL 45.79 40.71 41.14 

MFCC 44.74 38.16 38.44 

Max 44.12 39.64 39.87 

Sum 44.69 39.43 39.62 

Product 44.60 39.61 39.91 

1 dB SNR ACW 44.38 40.92 41.13 

CEP 44.42 40.15 40.31 

PFL 44.26 39.52 40.03 

MFCC 42.95 35.16 35.59 

Max 42.54 36.71 37.13 

Sum 43.31 36.88 37.38 

Product 43.60 37.11 37.51 

2 dB SNR ACW 42.00 39.35 40.30 

CEP 43.02 38.37 39.02 

PFL 42.11 37.73 38.57 

MFCC 40.82 34.21 34.90 

Max 40.15 34.86 35.61 

Sum 41.00 35.02 35.72 

Product 41.12 35.18 36.10 

3 dB SNR ACW 41.29 37.82 36.92 

CEP 41.62 37.07 36.52 

PFL 41.05 35.16 34.49 

MFCC 38.34 30.80 30.26 

Max 39.21 32.00 30.66 

Sum 38.81 32.57 31.94 

Product 39.11 32.89 32.09 

4 dB SNR ACW 39.63 35.45 35.25 

CEP 39.66 34.43 33.94 

PFL 39.84 33.46 33.34 

MFCC 37.23 29.13 29.04 

Max 37.13 30.13 29.86 

Sum 37.17 30.47 30.30 

Product 37.24 30.61 30.55 

5 dB SNR ACW 36.73 32.89 33.08 

CEP 37.90 32.13 32.08 

PFL 37.62 30.89 31.45 

MFCC 35.46 27.00 26.97 

Max 34.62 27.81 28.55 

Sum 35.52 27.38 27.37 

Product 35.71 27.66 27.72 

6 dB SNR ACW 35.52 30.40 30.56 

CEP 36.20 29.93 29.82 

PFL 35.77 28.46 28.47 

MFCC 33.50 25.15 25.37 

Max 32.89 25.09 25.39 

Sum 33.04 24.49 24.39 

Product 33.34 24.85 24.78 
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Table 11 (continued) 

Test Condition Feature/Fusion Nothing Blind Perfect 

7 dB SNR ACW 34.10 29.76 30.18 

CEP 34.79 28.55 28.74 

PFL 33.71 27.08 27.34 

MFCC 31.26 23.79 23.83 

Max 31.42 24.38 24.14 

Sum 31.19 23.68 24.31 

Product 31.60 23.94 24.43 

8 dB SNR ACW 31.85 27.70 26.83 

CEP 32.84 25.57 24.70 

PFL 31.85 24.48 23.83 

MFCC 29.10 21.34 20.70 

Max 28.66 21.88 20.93 

Sum 29.43 20.77 20.41 

Product 29.47 20.82 20.40 

9 dB SNR ACW 30.62 24.24 24.29 

CEP 30.34 23.14 22.97 

PFL 29.13 21.98 21.76 

MFCC 26.69 20.30 19.88 

Max 26.18 20.00 18.80 

Sum 26.48 18.45 17.70 

Product 26.71 18.41 17.82 

10 dB SNR ACW 27.89 21.98 21.60 

CEP 28.87 21.72 21.59 

PFL 27.67 20.45 20.03 

MFCC 25.79 17.48 17.11 

Max 24.46 17.58 17.39 

Sum 24.62 16.69 16.44 

Product 24.71 16.81 16.55 

11 dB SNR ACW 25.84 20.53 20.32 

CEP 26.67 19.61 19.51 

PFL 25.12 18.27 18.03 

MFCC 23.34 15.59 15.41 

Max 22.07 15.66 15.57 

Sum 22.43 14.78 14.54 

Product 22.69 14.81 14.55 

12 dB SNR ACW 23.92 18.04 18.05 

CEP 24.16 17.52 17.26 

PFL 22.85 17.00 16.72 

MFCC 21.85 15.11 14.53 

Max 20.08 13.51 13.77 

Sum 19.93 13.04 13.00 

Product 20.15 13.16 13.04 

13 dB SNR ACW 21.92 16.82 16.18 

CEP 22.59 16.47 15.78 

PFL 20.84 15.79 14.89 

MFCC 20.02 13.64 13.40 

Max 18.55 12.82 12.48 

Sum 18.42 11.57 10.95 

Product 18.54 11.60 10.94 
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Table 11 (continued) 

Test Condition Feature/Fusion Nothing Blind Perfect 

14 dB SNR ACW 20.49 14.93 14.37 

CEP 20.44 15.21 14.38 

PFL 19.27 13.95 13.48 

MFCC 18.19 12.54 12.32 

Max 16.55 11.49 11.33 

Sum 16.86 10.62 10.16 

Product 17.05 10.65 10.34 

15 dB SNR ACW 18.95 13.30 12.90 

CEP 19.01 13.96 13.39 

PFL 17.80 12.82 12.40 

MFCC 16.89 10.95 10.50 

Max 15.30 10.21 9.89 

Sum 14.92 9.12 8.63 

Product 15.16 9.11 8.70 

16 dB SNR ACW 17.15 11.75 11.51 

CEP 16.93 12.45 12.01 

PFL 16.27 11.61 11.14 

MFCC 15.20 10.47 10.19 

Max 13.75 9.72 9.35 

Sum 13.36 8.28 7.97 

Product 13.60 8.23 7.95 

17 dB SNR ACW 15.13 10.96 10.62 

CEP 15.92 11.58 11.25 

PFL 14.55 10.69 10.45 

MFCC 13.55 9.64 9.31 

Max 12.18 8.67 8.36 

Sum 12.06 7.18 6.96 

Product 12.19 7.14 7.01 

18 dB SNR ACW 13.76 10.49 10.15 

CEP 13.82 10.05 9.53 

PFL 13.46 9.79 9.29 

MFCC 12.94 8.89 8.83 

Max 11.29 7.88 7.79 

Sum 10.81 6.61 6.42 

Product 10.92 6.71 6.46 

19 dB SNR ACW 12.83 9.06 8.92 

CEP 13.09 9.51 9.17 

PFL 12.59 8.70 8.35 

MFCC 11.24 7.58 7.45 

Max 10.22 7.07 6.98 

Sum 9.50 5.40 5.43 

Product 9.58 5.34 5.34 

20 dB SNR ACW 11.46 8.45 8.20 

CEP 11.91 8.87 8.54 

PFL 10.96 7.91 7.74 

MFCC 10.12 7.65 7.51 

Max 8.96 6.39 6.13 

Sum 8.42 5.41 5.14 

Product 8.48 5.39 5.15 
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Table 11 (continued) 

Test Condition Feature/Fusion Nothing Blind Perfect 

21 dB SNR ACW 9.91 7.59 7.24 

CEP 10.66 7.72 7.59 

PFL 10.33 7.52 7.38 

MFCC 9.52 6.86 6.57 

Max 8.40 5.70 5.87 

Sum 7.55 4.56 4.42 

Product 7.64 4.62 4.50 

22 dB SNR ACW 9.54 7.25 7.00 

CEP 9.71 7.22 6.87 

PFL 9.16 6.67 6.40 

MFCC 8.40 6.44 6.37 

Max 7.65 5.40 5.35 

Sum 6.56 4.41 4.12 

Product 6.61 4.38 4.15 

23 dB SNR ACW 8.40 6.49 6.42 

CEP 8.63 6.73 6.49 

PFL 8.14 6.19 6.09 

MFCC 8.18 6.21 6.09 

Max 6.72 5.22 5.10 

Sum 5.92 3.96 3.97 

Product 5.94 3.96 3.88 

24 dB SNR ACW 7.69 5.80 5.59 

CEP 7.69 5.80 5.56 

PFL 7.49 5.88 5.70 

MFCC 7.46 6.05 6.00 

Max 6.23 4.79 4.76 

Sum 5.16 3.67 3.67 

Product 5.22 3.65 3.63 

25 dB SNR ACW 6.79 5.55 5.23 

CEP 7.34 6.10 5.57 

PFL 6.66 5.13 4.84 

MFCC 6.52 5.71 5.54 

Max 5.95 4.66 4.48 

Sum 4.51 3.56 3.33 

Product 4.48 3.46 3.26 

26 dB SNR ACW 6.26 5.30 4.95 

CEP 6.74 5.78 5.37 

PFL 6.25 5.41 5.03 

MFCC 6.20 5.17 4.94 

Max 5.20 4.21 4.02 

Sum 4.26 3.23 3.05 

Product 4.26 3.22 3.00 

27 dB SNR ACW 5.84 5.14 4.82 

CEP 6.07 5.49 5.04 

PFL 5.86 5.15 4.63 

MFCC 5.67 4.88 4.65 

Max 4.67 4.19 3.97 

Sum 3.81 3.29 3.02 

Product 3.83 3.20 2.98 

 



www.manaraa.com

 

119 
 

Table 11 (continued) 

Test Condition Feature/Fusion Nothing Blind Perfect 

28 dB SNR ACW 5.47 4.99 4.61 

CEP 5.72 5.21 4.67 

PFL 5.39 4.61 4.23 

MFCC 5.20 4.74 4.24 

Max 4.40 3.84 3.65 

Sum 3.49 3.06 2.79 

Product 3.44 3.01 2.77 

29 dB SNR ACW 5.08 4.53 4.32 

CEP 5.46 5.08 4.64 

PFL 4.95 4.47 4.04 

MFCC 4.44 4.17 4.10 

Max 4.13 3.53 3.25 

Sum 3.27 2.81 2.67 

Product 3.24 2.85 2.63 

30 dB SNR ACW 4.41 4.11 3.77 

CEP 5.01 4.63 4.31 

PFL 4.53 4.22 3.90 

MFCC 4.29 4.17 3.92 

Max 3.86 3.55 3.21 

Sum 3.09 2.75 2.58 

Product 3.07 2.74 2.54 

Clean Speech ACW 2.59 2.65 2.59 

CEP 3.06 3.08 3.06 

PFL 3.02 3.07 3.02 

MFCC 2.77 2.76 2.77 

Max 2.20 2.27 2.20 

Sum 1.77 1.78 1.77 

Product 1.76 1.76 1.76 

Note: The columns labeled Nothing, Blind, and Perfect denote the SNR estimation mode 

used for each trial. Nothing means that no enhancement was used. 

 

 Table 11 contains the average equal error rates taken over 10 rotations for each of 

the feature, fusions, SNR estimation modes, and test conditions used in the GSV-PLS 

trials. 
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4.3 Classifier Comparison 

 The optimal configurations for each classifier obtained via the previous 

experiments were used to compare the GMM-UBM and GSV-PLS systems. Ten rotations 

were performed in order to gather data to perform a one-way analysis of variance, 

followed by multiple comparison to identify the statistically best method. Only the sum 

fusion scores for the GMM-UBM and GSV-PLS systems were considered. The three 

fusion strategies were used to perform classifier fusion. The multiple comparison plots 

for each test condition are provided below. A summary of the results is included at the 

end of the subchapter. 
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Figure 36. Comparison of classifiers and fusions for 0 dB to 5 dB. 

 

 Figure 36 shows the 95% confidence intervals for the trials comparing the GMM-

UBM system, the GSV-PLS system, and the three methods used to fuse them for SNRs 

ranging from 0 dB to 5 dB. At an SNR of 0 dB, there is no statistically significant 
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difference between the means of the EERs obtained from the GMM-UBM classifier and 

the three fusions. There is also no statistically significant difference between the means of 

the EERs obtained from the GMM-UBM and GSV-PLS classifiers. However, there is a 

statistically significant difference between the means of the EERs obtained using the 

GSV-PLS classifier and the three fusions; therefore, the three fusions were taken to be 

the best set for an SNR of 0 dB. 

 For SNRs of 1, 2, and 3 dB, there is no statistically significant difference between 

the means of the EERs obtained from any system. For SNRs of 4 dB and 5 dB, there is no 

statistically significant difference between the means of the EERs obtained using the 

GMM-UBM classifier and the three fusions. There are statistically significant differences 

in the means of the EERs obtained using the sum and product fusion methods and the 

means of the EERs obtained using the GSV-PLS classifier. For these two cases, the sum 

and product fusions were taken to be optimal. 
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Figure 37. Comparison of classifiers and fusions for 6 dB to 11 dB. 

 

 Figure 37 shows the 95% confidence intervals for the trials comparing the GMM-

UBM system, the GSV-PLS system, and the three methods used to fuse them for SNRs 

ranging from 6 dB to 11 dB. For all SNRs between 6 dB and 11 dB, there is no 
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statistically significant difference between the means of the EERs obtained using sum and 

product fusion. At 6 dB, there is no statistically significant difference between the means 

of the EERs obtained using any of the fusion methods. There is a statistically significant 

difference between the means of the EERs obtained using sum and product fusion and the 

EERs obtained using the GMM-UBM and GSV-PLS classifiers alone. Therefore, for an 

SNR 6 dB, the best set was taken as the sum and product fusion methods. 

 At an SNR of 7 dB, there was no statistically significant difference between the 

means of the EERs obtained using sum and product and the EERs obtained using the 

GMM-UBM system alone; however, for only the product fusion, there were statistically 

significant differences in the means of the EERs obtained with that fusion method and the 

EERs obtained using the GSV-PLS system alone and obtained using max fusion. 

Therefore, for an SNR of 7 dB, product fusion of the classifiers was taken to be the 

optimal system. 

 At an SNR of 8 dB, there was no statistically significant difference in the means 

of the EERs obtained using any of the fusion strategies and using the GMM-UBM system 

alone. There were statistically significant differences between the means of the EERs 

obtained using sum and product fusion and the EERs obtained using the GSV-PLS 

system. Therefore, for an SNR of 8 dB, sum fusion and product fusion were chosen as the 

best set of systems. 

 At an SNR of 9 dB, there was no statistically significant difference in the means 

of the EERs obtained using any of the fusion strategies and using the GMM-UBM system 

alone. There were statistically significant differences between the means of the EERs 
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obtained using all of the fusions and the EERs obtained using the GSV-PLS system. 

Therefore, for an SNR of 9 dB, max, sum, and product fusion were chosen as the best set 

of systems. 

 At an SNR of 10 dB, there was no statistically significant difference in the means 

of the EERs obtained using any of the fusion strategies and using the GMM-UBM system 

alone. There were statistically significant differences between the means of the EERs 

obtained using the GSV-PLS system and all of the other configurations. Therefore, for an 

SNR of 10 dB, the GMM-UBM system, max fusion, sum fusion, and product fusion were 

chosen as the best set of systems. 

 At an SNR of 11 dB, there was no statistically significant difference between the 

means of the EERs obtained using sum and product and the EERs obtained using 

maximum fusion; however, for only the sum fusion, there were statistically significant 

differences in the means of the EERs obtained with that fusion method and the EERs 

obtained using both of the classifiers alone. Therefore, for an SNR of 11 dB, sum fusion 

of the classifiers was taken to be the optimal system. 
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Figure 38. Comparison of classifiers and fusions for 12 dB to 17 dB. 

 

 Figure 38 shows the 95% confidence intervals for the trials comparing the GMM-

UBM system, the GSV-PLS system, and the three methods used to fuse them for SNRs 

ranging from 12 dB to 17 dB. For SNRs of 12, 13, and 14 dB, there is no statistically 
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significant difference in the means of the EERs obtained using the three fusion strategies 

and the GMM-UBM system alone; however, all four are shown to be statistically better 

than the GSV-PLS system. Therefore, for these three SNRs, the GMM-UBM system and 

the three fusion methods are taken to be the best set. 

 For an SNR of 15 dB, there is no statistically significant difference in the means 

of the EERs obtained using any of the three fusion methods. For only the sum fusion 

method, there are statistically significant differences in the means of the EERs obtained 

using that fusion method and the EERs obtained using the both classifiers without fusion. 

Therefore, for an SNR of 15 dB, sum fusion is considered optimal. 

 For an SNR of 16 dB, there is no statistically significant difference in the means 

of the EERs obtained using any of the three fusion methods. For sum and product fusion, 

there are statistically significant differences in the means of the EERs obtained using 

those two fusions and the EERs obtained using the two classifiers without fusion. 

Therefore, for an SNR of 16 dB, sum fusion and product fusion are both considered 

optimal. 

 For an SNR of 17 dB, there is no statistically significant difference in the means 

of the EERs obtained using sum fusion and product fusion. However, there are 

statistically significant differences between the means of the EERs obtained using sum 

fusion and the EERs for all other systems than product fusion; therefore, sum fusion is 

taken to be the best for this SNR. 
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Figure 39. Comparison of classifiers and fusions for 18 dB to 23 dB. 

 

 Figure 39 shows the 95% confidence intervals for the trials comparing the GMM-

UBM system, the GSV-PLS system, and the three methods used to fuse them for SNRs 

ranging from 18 dB to 23 dB. For SNRs of 18, 19, and 20 dB, there is no statistically 
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significant difference between the means of the EERs obtained using sum and product 

fusion. Both of these fusions are shown to be statistically better than all other 

configurations, so they are considered optimal for these SNRs. 

 For an SNR of 21 dB, there is no statistically significant difference between the 

means of the EERs obtained using sum fusion, product fusion, and the GSV-PLS 

classifier with no fusion. There are statistically significant differences in the means of the 

EERs obtained using sum and product fusion and the EERs obtained using max fusion 

and the GMM-UBM system without fusion. Therefore, for an SNR of 21 dB, sum and 

product fusion are again taken to be optimal. 

 For an SNR of 22 dB, there is no statistically significant difference between the 

means of the EERs obtained using all of the fusions and the GMM-UBM classifier with 

no fusion; however, there are statistically significant difference between the means of the 

EERs obtained using sum and product fusion and the EERs obtained using the GSV-PLS 

classifier alone. Therefore, for an SNR of 22 dB, sum and product fusion are taken as 

optimal once again. 

 For an SNR of 23 dB, there is no statistically significant difference between the 

means of the EERs obtained using any of the systems. All systems are included in the 

best set of this SNR. 
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Figure 40. Comparison of classifiers and fusions for 24 dB to 29 dB. 

 

 Figure 40 shows the 95% confidence intervals for the trials comparing the GMM-

UBM system, the GSV-PLS system, and the three methods used to fuse them for SNRs 

ranging from 24 dB to 29 dB. For an SNR of 24 dB, there is no statistically significant 
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difference in the means of the EERs obtained using sum fusion and product fusion. 

However, there are statistically significant differences between the means of the EERs 

obtained using sum fusion and the EERs for all systems other than product fusion; 

therefore, sum fusion is taken to be the best for this SNR. 

 For SNRs of 25, 26, and 29 dB, there is no statistically significant difference 

between the means of the EERs obtained using sum fusion, product fusion, and the GSV-

PLS classifier with no fusion. There are statistically significant differences in the means 

of the EERs obtained using sum and product fusion and the EERs obtained using max 

fusion and the GMM-UBM system without fusion. Therefore, sum and product fusion are 

again taken to be optimal for these SNRs. 

 For an SNR of 27 dB, there is no statistically significant difference between the 

means of the EERs obtained using product fusion, sum fusion, and the GSV-PLS 

classifier without fusion. However, for only the product fusion, there are statistically 

significant differences in the means of the EERs obtained using that fusion method and 

the EERs obtained using max fusion and the GMM-UBM system without fusion. 

Therefore, for an SNR of 27 dB, product fusion is considered optimal. 

 For an SNR of 28 dB, there are no statistically significant differences between the 

means of the EERs obtained using any of the methods. All systems are taken to be a part 

of the best set for this SNR. 
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Figure 41. Comparison of classifiers and fusion for 30 dB and clean speech. 

 

 Figure 41 shows the 95% confidence intervals for the trials comparing the GMM-

UBM system, the GSV-PLS system, and the three methods used to fuse them for an SNR 

of 30 dB and for clean test speech. For an SNR of 29 dB, there is no statistically 

significant difference between the means of the EERs obtained using product fusion, sum 

fusion, and the GSV-PLS classifier without fusion. However, for only the sum fusion, 

there are statistically significant differences in the means of the EERs obtained using that 

fusion method and the EERs obtained using max fusion and the GMM-UBM system 

without fusion. Therefore, for an SNR of 29 dB, sum fusion is considered optimal. 

 When tested on clean speech, there is no statistically significant difference 

between the means of the EERs obtained using sum fusion and product fusion. Both of 

these fusion methods are shown to be statistically superior to all of the other 

configurations; therefore, for clean speech, sum fusion and product fusion of the 

classifiers are considered optimal. 
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Table 12  

Summary of best performing classifiers and fusions. 

Classifier/Fusion Appeared in Best Set Total Count 
GMM-UBM 1 – 3 dB, 10 dB, 12 – 14 dB, 23 dB, 28 dB 9 

GSV-PLS 1 – 3 dB, 23 dB, 28 dB 5 

Max Fusion 0 – 3 dB, 9 dB, 10 dB, 12 – 14 dB, 23 dB, 28 dB 11 

Sum Fusion 0 – 6 dB, 8 – 26 dB, 28 – 30 dB, Clean 30 

Product Fusion 0 – 10 dB, 12 – 14 dB, 16 dB, 18 – 22 dB, 25 – 29 dB, Clean 27 

Note: The column labeled Appeared in Best Set indicates the SNR trials for which each 

classifier or fusion was selected as one of the optimal systems. 

 

 Table 12 provides a summary of the results obtained while comparing the GMM-

UBM and GSV-PLS systems with their optimal configurations against each other and 

against their fusions. The GSV-PLS system without fusion was only included amongst 

the best set for a given SNR when there was no statistically significant difference 

between the means of the EERs in any of the systems. Additionally, it only outperformed 

the GMM-UBM system when tested using clean speech. Despite this evidently poor 

showing, it is still worthwhile to implement such a system due to how well the fusion of 

the GMM-UBM and GSV-PLS systems performs.  

 The sum and product fusion methods were counted among the best sets of 

classifiers in nearly every trial, and totally outperformed the systems without fusion 

several times. In a practical implementation, the best system to design in order to deal 

with additive noise at the speaker level would be the sum fusion of classifiers or the 

product fusion of classifiers, with sum fusion holding a slight edge.  

 A full tabulation of the average equal error rates obtained in these trials is 

provided below. 
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Table 13  

Average equal error rates for trials comparing classifiers and their fusions. 

Test 
Condition 

 
GMM-UBM 

 
GSV-PLS 

 
Max 

 
Sum 

 
Product 

0 dB SNR 38.86 39.43 38.07 37.67 37.93 
1 dB SNR 37.16 36.88 36.62 36.12 36.57 

2 dB SNR 34.68 35.02 34.09 33.53 33.68 

3 dB SNR 32.18 32.57 31.75 31.27 31.28 

4 dB SNR 29.82 30.47 29.08 28.38 28.39 

5 dB SNR 26.88 27.38 26.30 25.46 25.41 

6 dB SNR 24.70 24.49 23.63 22.75 22.87 

7 dB SNR 22.50 23.68 22.80 21.09 21.05 

8 dB SNR 19.68 20.77 19.57 18.39 18.30 

9 dB SNR 17.37 18.45 16.80 16.10 16.09 

10 dB SNR 15.02 16.69 14.69 14.18 14.26 

11 dB SNR 13.47 14.78 12.90 12.13 12.26 

12 dB SNR 11.26 13.04 11.47 10.94 10.99 

13 dB SNR 9.93 11.57 9.98 9.27 9.32 

14 dB SNR 9.31 10.62 8.91 8.48 8.47 

15 dB SNR 8.20 9.12 7.78 7.14 7.26 

16 dB SNR 7.54 8.28 7.33 6.44 6.39 

17 dB SNR 6.57 7.18 6.51 5.53 5.61 

18 dB SNR 6.05 6.61 6.02 5.09 5.22 

19 dB SNR 5.55 5.40 5.44 4.44 4.43 

20 dB SNR 4.93 5.41 4.92 4.08 4.11 

21 dB SNR 4.65 4.56 4.65 3.76 3.77 

22 dB SNR 4.10 4.41 4.05 3.56 3.60 

23 dB SNR 3.89 3.96 3.86 3.39 3.35 

24 dB SNR 3.82 3.67 3.82 3.06 3.15 

25 dB SNR 3.61 3.56 3.63 2.91 2.93 

26 dB SNR 3.51 3.23 3.46 2.78 2.72 

27 dB SNR 3.46 3.29 3.47 2.79 2.72 

28 dB SNR 3.19 3.06 3.20 2.58 2.48 

29 dB SNR 3.25 2.81 3.20 2.50 2.53 

30 dB SNR 2.93 2.75 2.93 2.28 2.34 

Clean Speech 2.07 1.67 1.75 1.17 1.17 
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Chapter 5 

Conclusions 

 Chapter 5 contains a recapitulation of the chapters contained within this thesis. 

The research accomplishments as they relate to the objectives set in Chapter 1 are 

reviewed. Finally, to conclude the thesis, research recommendations and ideas for future 

work are detailed. 

5.1 Review of Thesis 

 Chapter 1 contains a statement of the problem that is being worked on by this 

thesis as well as the goals the thesis set out to accomplish. Chapter 2 gives an overview of 

the background information needed to understand each step of the procedure taken in the 

thesis. Chapter 3 contains a detailed methodology that was used to accomplish each of 

the research goals set in Chapter 1. Chapter 4 provided a comprehensive results obtained 

from each experiment performed in the proposed approach of this thesis. The results from 

each experiment enabled the way forward by providing enough information to identify 

optimal parameters for implementing each of the speaker verification systems. 

5.2 Summary of Research Accomplishments 

The goal of this thesis was to implement and validate methods for enhancing the 

performance of speaker verification systems in the presence of additive noise. The results 

demonstrated that using a repertoire of affine transforms in combination with a robust 

signal-to-noise ratio estimator significantly increased the performance of both the GMM-

UBM and the GSV-PLS classifier. Further, performing score-level fusion and classifier 
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fusion facilitated more robust classification at a range of test conditions. The objectives 

set in the first chapter of this thesis are now reviewed: 

1. To implement both a GMM-UBM and GSV-PLS system for speaker 

verification. 

- A Gaussian mixture model universal background model speaker verification 

system was implemented for four different formulated features. The mean 

vectors of the MAP adapted speaker models were used to create Gaussian 

supervectors. The supervectors were then used in a one vs. all partial least 

squares regression framework developed for speaker verification. These two 

classifiers were compared and analyzed to identify statistically significant 

performance. 

2. To enhance the performance of the speaker verification systems using SNR 

estimation, affine transforms, and score-level fusion of feature vectors. 

- Signal-to-noise ratio estimation was performed using VQ codebooks trained 

on the noise levels of training data. This SNR estimation was used to select 

from a repertoire of affine transforms for enhancement of the feature vectors. 

Score-level fusion of all of the features was performed using three different 

strategies. Each of these enhancements was shown to have resulted in 

statistically significant performance gains in numerous test conditions.  

3. To investigate the effect of the “affine resolution” parameter in supplementing 

the robustness of the speaker verification systems. 
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- Multiple affine resolutions were examined in order to identify their effect on 

the performance of each classifier. For the GMM-UBM system, it was shown 

that an affine resolution of 1 is optimal. For the GSV-PLS system, it was 

shown that an affine resolution of 5 is optimal. 

4. To identify the best performing feature or fusion of features in the presence of 

various SNR noise-levels. 

- Statistical analysis showed that for both the GMM-UBM and the GSV-PLS 

classifier, sum fusion resulted in the most pronounced performance gains in 

the most test conditions. 

5. To perform a full classifier fusion of GMM-UBM and GSV-PLS in their best 

configurations. 

- The optimal configurations of each of the classifiers was determined through 

exhaustive experimentation with all of the identified key parameters. Fusion 

of the classifiers was performed using three score-level fusion techniques. 

6. To analyze the performances of each classifier and their fusion to determine 

whether there are statistically significant differences. 

- The performances of the GMM-UBM and GSV-PLS systems were compared 

against each other and against the performances of their fusions. It was shown 

by statistical analysis that using sum fusion of the classifiers results in the best 

performance under the most test conditions. 
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5.3 Recommendations for Future Work 

 All of the experiments involving different signal-to-noise ratios were performed 

using only additive white Gaussian noise. Testing the performance of these systems in the 

presence of a more diverse set of noise types may be beneficial. Additionally, the number 

of PLS components for the regression models were chosen based on the amount of 

variance explained by the model. Further experimentation with the effect of the number 

of PLS components on overall system performance may be warranted. 

 The uses of PLS regression for different aspects of speaker verification have not 

been exhausted. PLS regression is a powerful tool that might be successfully used in 

place of many different methods in the proposed approach. For example, rather than 

using VQ codebooks to perform SNR estimation, PLS regression might be useful in 

performing this task. Because of the entirely different approaches PLS and VQ would use 

to estimate SNRs, fusion could be attempted in order to create a more accurate SNR 

estimator. Furthermore, the use of PLS regression in place of affine transforms for feature 

enhancement as a bulwark against corrupted speech signals may be a fruitful area of 

research. 
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